(2013•廣元一模)非空集合G關(guān)于運(yùn)算?滿足:①對(duì)任意a、b∈G,都有a?b∈G:;②存在e∈G,對(duì)一切a∈G,都 有a?e=e?a=a,則稱G關(guān)于運(yùn)算?為“和諧集”,現(xiàn)給出下列集合和運(yùn)算:
①G={非負(fù)整數(shù)},?為整數(shù)的加法;
②G={偶數(shù)},?為整數(shù)的乘法;
③G={平面向量},?為平面向量的加法;
④G={二次三項(xiàng)式},?為多項(xiàng)式的加法.
其中關(guān)于運(yùn)算?為“和諧集”的是
①③
①③
(寫出所有“和諧集”的序號(hào)).
分析:利用G關(guān)于運(yùn)算?為“和諧集”的定義,分別對(duì)四個(gè)集合及相應(yīng)的運(yùn)算驗(yàn)證兩點(diǎn):①對(duì)任意a、b∈G,都有a?b∈G:;②存在e∈G,對(duì)一切a∈G,都 有a?e=e?a=a,
解答:解:對(duì)于①,a、b∈{非負(fù)整數(shù)},都有a+b∈{非負(fù)整數(shù)}并且a+0=0+a=a,所以①中的G關(guān)于運(yùn)算+為“和諧集”,
對(duì)于②,對(duì)任意a、b∈{偶數(shù)},都有ab∈{偶數(shù)},但不存在e∈{偶數(shù)},對(duì)一切a∈{偶數(shù)} 有ae=ea=a,所以②中的G關(guān)于運(yùn)算乘法不為“和諧集”,
對(duì)于③,對(duì)任意
a
,
b
∈{平面向量},都有
a
+
b
∈{平面向量},并且
a
+
0
=
0
+
a
=
a
,所以③中的G關(guān)于運(yùn)算+為“和諧集”,
對(duì)于④,對(duì)任意a、b∈{二次三項(xiàng)式},不一定有a+b∈{二次三項(xiàng)式},所以④中的G關(guān)于運(yùn)算乘法不為“和諧集”,
故答案為①③
點(diǎn)評(píng):本題考查解決新定義的關(guān)鍵是弄明白題目中所給的定義必須滿足的條件,新定義題是近幾年高考?嫉念}型.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•廣元一模)給出下面四個(gè)命題:
p1:?x∈(0,∞),(
1
2
)x<(
1
3
)x
;
p2:?x∈(0,1),log
1
2
x>log
1
3
x

p3:?x∈(0,∞),(
1
2
)x>log
1
2
x
;
p4:?x∈(0,
1
3
),(
1
2
)x<log
1
3
x,
其中的真命題是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•廣元一模)(x2+
2
x
)8
展開式中x4的系數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•廣元一模)若集合A={x|x2-2x<0},B={x|x>1},則A∩B為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•廣元一模)已知f(x)是R上最小正周期為2的周期函數(shù),且當(dāng)0≤x<2時(shí),f(x)=x3-x,則函數(shù)f(x)在[0,6]上有
7
7
個(gè)零點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案