【題目】科赫曲線是一種外形像雪花的幾何曲線,一段科赫曲線可以通過(guò)下列操作步驟構(gòu)造得到,任畫(huà)一條線段,然后把它均分成三等分,以中間一段為邊向外作正三角形,并把中間一段去掉,這樣,原來(lái)的一條線段就變成了4條小線段構(gòu)成的折線,稱(chēng)為“一次構(gòu)造”;用同樣的方法把每條小線段重復(fù)上述步驟,得到16條更小的線段構(gòu)成的折線,稱(chēng)為“二次構(gòu)造”,…,如此進(jìn)行“次構(gòu)造”,就可以得到一條科赫曲線.若要在構(gòu)造過(guò)程中使得到的折線的長(zhǎng)度達(dá)到初始線段的1000倍,則至少需要通過(guò)構(gòu)造的次數(shù)是( ).(取,)
A.16B.17C.24D.25
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)某省的高考改革方案,考生應(yīng)在3門(mén)理科學(xué)科(物理、化學(xué)、生物)和3門(mén)文科學(xué)科(歷史、政治、地理)的6門(mén)學(xué)科中選擇3門(mén)學(xué)科參加考試.根據(jù)以往統(tǒng)計(jì)資料,1位同學(xué)選擇生物的概率為0.5,選擇物理但不選擇生物的概率為0.2,考生選擇各門(mén)學(xué)科是相互獨(dú)立的.
(1)求1位考生至少選擇生物、物理兩門(mén)學(xué)科中的1門(mén)的概率;
(2)某校高二段400名學(xué)生中,選擇生物但不選擇物理的人數(shù)為140,求1位考生同時(shí)選擇生物、物理兩門(mén)學(xué)科的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求直線的普通方程和曲線的直角坐標(biāo)方程;
(2)設(shè)點(diǎn),直線與曲線交于兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的長(zhǎng)軸長(zhǎng)為4,且經(jīng)過(guò)點(diǎn).
(1)求橢圓的方程;
(2)直線的斜率為,且與橢圓相交于,兩點(diǎn)(異于點(diǎn)),過(guò)作的角平分線交橢圓于另一點(diǎn).證明:直線與坐標(biāo)軸平行.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知兩條拋物線C:y2=2x,E:y2=2px(p>0且p≠1),M為C上一點(diǎn)(異于原點(diǎn)O),直線OM與E的另一個(gè)交點(diǎn)為N.若過(guò)M的直線l與E相交于A,B兩點(diǎn),且△ABN的面積是△ABO面積的3倍,則p=_____
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠預(yù)購(gòu)軟件服務(wù),有如下兩種方案:
方案一:軟件服務(wù)公司每日收取工廠60元,對(duì)于提供的軟件服務(wù)每次10元;
方案二:軟件服務(wù)公司每日收取工廠200元,若每日軟件服務(wù)不超過(guò)15次,不另外收費(fèi),若超過(guò)15次,超過(guò)部分的軟件服務(wù)每次收費(fèi)標(biāo)準(zhǔn)為20元.
(1)設(shè)日收費(fèi)為元,每天軟件服務(wù)的次數(shù)為,試寫(xiě)出兩種方案中與的函數(shù)關(guān)系式;
(2)該工廠對(duì)過(guò)去100天的軟件服務(wù)的次數(shù)進(jìn)行了統(tǒng)計(jì),得到如圖所示的條形圖,依據(jù)該統(tǒng)計(jì)數(shù)據(jù),把頻率視為概率,從節(jié)約成本的角度考慮,從兩個(gè)方案中選擇一個(gè),哪個(gè)方案更合適?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在無(wú)窮數(shù)列中,,記前項(xiàng)中的最大項(xiàng)為,最小項(xiàng)為,令.
(1)若的前項(xiàng)和滿足.
①求;
②是否存在正整數(shù)滿足?若存在,請(qǐng)求出這樣的,若不存在,請(qǐng)說(shuō)明理由.
(2)若數(shù)列是等比數(shù)列,求證:數(shù)列是等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中,底面,,,,,,為棱的中點(diǎn).
(1)求證:平面;
(2)求點(diǎn)到平面的距離,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在棱長(zhǎng)都相等的正三棱柱中,是棱的中點(diǎn),是棱上的動(dòng)點(diǎn).設(shè),隨著增大,平面與底面所成銳二面角的平面角是( )
A.增大B.先增大再減小
C.減小D.先減小再增大
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com