已知tanα=-
1
3
,則sin2α+2sinαcosα-3cos2α+1=
 
考點:同角三角函數(shù)基本關系的運用
專題:三角函數(shù)的求值
分析:由條件利用同角三角函數(shù)的基本關系,求得要求式子的值.
解答: 解:∵tanα=-
1
3
,則sin2α+2sinαcosα-3cos2α+1=
sin2α+2sinαcosα-3cos2α
sin2α+cos2α
+1=
tan2α+2tanα-3
tan2α+1
+1
=
1
9
-
2
3
-3
1
9
+1
+1=3.4,
故答案為:3.4.
點評:本題主要考查同角三角函數(shù)的基本關系的應用,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
x2,x∈(-∞,0)
2cosx,x∈(0,π)
,若f[f(x0)]=0,則x0=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在R上的函數(shù)f(x)是最小正周期為2的奇函數(shù),且當x∈(0,1)時,f(x)=
2x
4x+1

(1)求f(x)在(-1,1)上的解析式;
(2)用單調性定義證明f(x)在(-1,0)上時減函數(shù);
(3)當λ取何值時,不等式f(x)>λ在R上有解.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知3a=2,log25=b,求log445.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

先比較大小,再用計算器求值:
(1)sin378°21′,tan1111°,cos642.5°;
(2)sin(-879°),tan(-
33π
8
),cos(-
13
10
π);
(3)sin3,cos(sin2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線C:y2=8x的焦點為F,準線為l,P是l上一點,Q是直線PF與C的一個交點,若
PF
=4
FQ
,則|QF|=( 。
A、
7
2
B、5
C、
5
2
D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
2
x2
+x-(x+1)ln(x+1),判斷f(x)的單調性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓錐的母線長為8,底面圓周長為6π,則它的表面積是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
4x-4,x≤1
x2-4x+3,x>1
,g(x)=lnx,則函數(shù)y=f(x)-g(x)的零點個數(shù)為(  )
A、1B、2C、3D、4

查看答案和解析>>

同步練習冊答案