(本題滿分14分)
已知箱中裝有4個白球和5個黑球,且規(guī)定:取出一個白球的2分,取出一個黑球的1分.
現(xiàn)從該箱中任取 ( 無放回 ) 3個球,記隨機(jī)變量X為取出3球所得分?jǐn)?shù)之和.
(Ⅰ) 求X的分布列;
(Ⅱ) 求X的數(shù)學(xué)期望E(X).
(Ⅰ)所求X的分布列為
X |
3 |
4 |
5 |
6 |
P |
(Ⅱ) 所求X的數(shù)學(xué)期望E(X)為:
E(X)=.
【解析】本題主要考查隨機(jī)事件的概率和隨機(jī)變量的分布列、數(shù)學(xué)期望等概念,同時考查抽象概括、運(yùn)算能力,屬于中檔題.
(1)X的可能取值有:3,4,5,6,求出相應(yīng)的概率可得所求X的分布列;
(2)利用X的數(shù)學(xué)期望公式,即可得到結(jié)論.
解:(Ⅰ) X的可能取值有:3,4,5,6.
; ;
; . ………………8分
故所求X的分布列為
X |
3 |
4 |
5 |
6 |
P |
………………10分
(Ⅱ) 所求X的數(shù)學(xué)期望E(X)為:
E(X)=. ………………14分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
π |
3 |
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分14分)如圖,四邊形ABCD為矩形,AD⊥平面ABE,AE=EB=BC=2,為上的點(diǎn),且BF⊥平面ACE.
(1)求證:AE⊥BE;(2)求三棱錐D-AEC的體積;(3)設(shè)M在線段AB上,且滿足AM=2MB,試在線段CE上確定一點(diǎn)N,使得MN∥平面DAE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省高三上學(xué)期期中考試數(shù)學(xué) 題型:解答題
(本題滿分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}
(Ⅰ)若AB=[0,3],求實(shí)數(shù)m的值
(Ⅱ)若ACRB,求實(shí)數(shù)m的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三上學(xué)期第三次月考理科數(shù)學(xué)卷 題型:解答題
(本題滿分14分)
已知點(diǎn)是⊙:上的任意一點(diǎn),過作垂直軸于,動點(diǎn)滿足。
(1)求動點(diǎn)的軌跡方程;
(2)已知點(diǎn),在動點(diǎn)的軌跡上是否存在兩個不重合的兩點(diǎn)、,使 (O是坐標(biāo)原點(diǎn)),若存在,求出直線的方程,若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆江西省高一第二學(xué)期入學(xué)考試數(shù)學(xué) 題型:解答題
(本題滿分14分)已知函數(shù).
(1)求函數(shù)的定義域;
(2)判斷的奇偶性;
(3)方程是否有根?如果有根,請求出一個長度為的區(qū)間,使
;如果沒有,請說明理由?(注:區(qū)間的長度為).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com