精英家教網 > 高中數學 > 題目詳情
(2013•天津)設函數f(x)=ex+x-2,g(x)=lnx+x2-3.若實數a,b滿足f(a)=0,g(b)=0,則(  )
分析:先判斷函數f(x),g(x)在R上的單調性,再利用f(a)=0,g(b)=0判斷a,b的取值范圍即可.
解答:解:①由于y=ex及y=x-2關于x是單調遞增函數,∴函數f(x)=ex+x-2在R上單調遞增,
分別作出y=ex,y=2-x的圖象,∵f(0)=1+0-2<0,f(1)=e-1>0,f(a)=0,∴0<a<1.
同理g(x)=lnx+x2-3在R+上單調遞增,g(1)=ln1+1-3=-2<0,g(
3
)=ln
3
+(
3
)2-3=
1
2
ln3>0
,g(b)=0,∴1<b<
3

∴g(a)=lna+a2-3<g(1)=ln1+1-3=-2<0,
f(b)=eb+b-2>f(1)=e+1-2=e-1>0.
∴g(a)<0<f(b).
故選A.
點評:熟練掌握函數的單調性、函數零點的判定定理是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2013•天津)設a,b∈R,則“(a-b)a2<0”是“a<b”的( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•天津)設橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左焦點為F,離心率為
3
3
,過點F且與x軸垂直的直線被橢圓截得的線段長為
4
3
3

(Ⅰ)求橢圓的方程;
(Ⅱ)設A,B分別為橢圓的左,右頂點,過點F且斜率為k的直線與橢圓交于C,D兩點.若
AC
DB
+
AD
CB
=8,求k的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•天津)設a∈[-2,0],已知函數f(x)=
x3-(a+5)x,x≤0
x3-
a+3
2
x2+ax,
x>0

(Ⅰ) 證明f(x)在區(qū)間(-1,1)內單調遞減,在區(qū)間(1,+∞)內單調遞增;
(Ⅱ) 設曲線y=f(x)在點Pi(xi,f(xi))(i=1,2,3)處的切線相互平行,且x1x2x3≠0,證明x1+x2+x3>-
1
3

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•天津)設a+b=2,b>0,則當a=
-2
-2
時,
1
2|a|
+
|a|
b
取得最小值.

查看答案和解析>>

同步練習冊答案