分析:先根據(jù)題意化簡約束條件,再畫出可行域,再利用u的幾何意義求最值,只需求出直線u=2x+6y+4z可行域內(nèi)的點(diǎn)B時(shí),從而得到u=2x+6y+4z的最值即可.
解答:解:約束條件組
,即
,目標(biāo)函數(shù)u=2x+6y+4z即u=-2x+2y+4.
如圖:作出可行域(6分)
目標(biāo)函數(shù):u=-2x+2y+4,則2y=2x+u-4,
當(dāng)目標(biāo)函數(shù)的直線過點(diǎn)B時(shí),u有最大值.
B(0,1),u
max=6.(10分)
當(dāng)目標(biāo)函數(shù)的直線過點(diǎn)A(1,1)時(shí),u有最小值u
min=4.
故選C.
點(diǎn)評:本題主要考查了用平面區(qū)域二元一次不等式組,以及簡單的轉(zhuǎn)化思想和數(shù)形結(jié)合的思想,屬中檔題.目標(biāo)函數(shù)有唯一最優(yōu)解是我們最常見的問題,這類問題一般要分三步:畫出可行域、求出關(guān)鍵點(diǎn)、定出最優(yōu)解.借助于平面區(qū)域特性,用幾何方法處理代數(shù)問題,體現(xiàn)了數(shù)形結(jié)合思想、化歸思想.線性規(guī)劃中的最優(yōu)解,通常是利用平移直線法確定.