設(shè)函數(shù)f(x)=x3+bx2+cx(x∈R),已知g(x)=f(x)-(x)是奇函數(shù).

(1)求b、c的值;

(2)求g(x)的單調(diào)區(qū)間與極值.

答案:
解析:

  解:(1)∵f(x)=x3+bx2+cx,∴(x)=3x2+2bx+c.

  從而g(x)=f(x)-(x)=x3+bx2+cx-(3x2+2bx+c)=x3+(b-3)x2+(c-2b)x-c是一個(gè)奇函數(shù),所以g(0)=0得c=0.由奇函數(shù)定義得b=3.

  (2)由(1)知g(x)=x3-6x,從而(x)=3x2-6.

  由此可知(-∞,)和(,+∞)是函數(shù)g(x)的單調(diào)遞增區(qū)間,()是函數(shù)g(x)的單調(diào)遞減區(qū)間.

  g(x)在x=時(shí),取得極大值,極大值為,g(x)在x=時(shí),取得極小值,極小值為


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2014屆湖北武漢部分重點(diǎn)中學(xué)高二下學(xué)期期中考試?yán)頂?shù)學(xué)試卷(解析版) 題型:解答題

 已知實(shí)數(shù)a滿足1<a≤2,設(shè)函數(shù)f (x)=x3x2+a x.

(Ⅰ) 當(dāng)a=2時(shí),求f (x)的極小值;

(Ⅱ) 若函數(shù)g(x)=4x3+3bx2-6(b+2)x  (b∈R) 的極小值點(diǎn)與f (x)的極小值點(diǎn)相同,

求證:g(x)的極大值小于或等于10.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年浙江省臨海市高三第三次模擬理科數(shù)學(xué)試卷(解析版) 題型:選擇題

設(shè)函數(shù)f (x)=x3-4x+a,0<a<2.若f (x)的三個(gè)零點(diǎn)為x1,x2,x3,且x1<x2<x3,則

A.x1>-1           B.x2<0             C.x2>0             D.x3>2

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆浙江瑞安瑞祥高級(jí)中學(xué)高二下學(xué)期期中考試文數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)函數(shù)f(x)=x3-12x+5,x∈R.

(1)求函數(shù)f(x)的單調(diào)區(qū)間和極值;

(2)若關(guān)于x的方程f(x)=a有三個(gè)不同實(shí)根,求實(shí)數(shù)a的取值范圍;

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年甘肅省高三第二次月考文科數(shù)學(xué)試卷 題型:解答題

設(shè)函數(shù)f(x)=x3-3ax2+3bx的圖象在處的切線方程為12x+y-1=0.

⑴求a,b的值;

⑵求函數(shù)f(x)在閉區(qū)間上的最大值和最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年甘肅省天水市高三第六次檢測(cè)數(shù)學(xué)文卷 題型:解答題

(12分)設(shè)函數(shù)f(x)=x3+ax2-9x-1(a<0)若曲線y=f(x)的斜率最小的切線與直線12x+y=6平行。求:

(1)a的值;

(2)函數(shù)y=f (x) 的單調(diào)區(qū)間;

 

查看答案和解析>>

同步練習(xí)冊(cè)答案