精英家教網 > 高中數學 > 題目詳情
已知數列{an}的首項a1=1,a2=3,前n項和為Sn,且Sn+1、Sn、Sn-1(n≥2)分別是直線l上的點A、B、C的橫坐標,,設b1=1,bn+1=log2(an+1)+bn
(1)判斷數列{an+1}是否為等比數列,并證明你的結論;
(2)設,證明:
【答案】分析:(1)用Sn+1、Sn、Sn-1表示出進而根據題意求得推斷出an+1+1=2(an+1)根據等比數列的定義判斷出數列{an+1}是等比數列.
(2)把(1)中求得an代入題設,求得bn的表達式,進而可求得Cn,進而用裂項法求得答案.
解答:解:(1)由題意得
∴an+1+1=2(an+1)(n≥2),又∵a1=1,a2=3
∴數列{an+1}是以a1+1=2為首項,以2為公比的等比數列.
[則an+1=2n∴an=2n-1(n∈N*)]
(2)由an=2n-1及bn+1=log2(an+1)+bn得bn+1=bn+n,∴,
=,=
點評:本題主要考查了等比數列的判定和等比數列的通項公式以及裂項法求和.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知數列{an}的首項a1=
1
2
,前n項和Sn=n2an(n≥1).
(1)求數列{an}的通項公式;
(2)設b1=0,bn=
Sn-1
Sn
(n≥2)
,Tn為數列{bn}的前n項和,求證:Tn
n2
n+1

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}的首項為a1=2,前n項和為Sn,且對任意的n∈N*,當n≥2,時,an總是3Sn-4與2-
52
Sn-1
的等差中項.
(1)求數列{an}的通項公式;
(2)設bn=(n+1)an,Tn是數列{bn}的前n項和,n∈N*,求Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•江門一模)已知數列{an}的首項a1=1,若?n∈N*,an•an+1=-2,則an=
1,n是正奇數
-2,n是正偶數
1,n是正奇數
-2,n是正偶數

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}的首項為a1=3,通項an與前n項和sn之間滿足2an=Sn•Sn-1(n≥2).
(1)求證:數列{
1Sn
}
是等差數列;
(2)求數列{an}的通項公式;
(3)求數列{an}中的最大項.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}的首項a1=
2
3
,an+1=
2an
an+1
,n∈N+
(Ⅰ)設bn=
1
an
-1
證明:數列{bn}是等比數列;
(Ⅱ)數列{
n
bn
}的前n項和Sn

查看答案和解析>>

同步練習冊答案