設(shè)α∈{-2,-1,-,,,1,2,3},則使f(x)=xa是奇函數(shù)且在(0,+∞)上是單調(diào)遞減的a的值的個(gè)數(shù)是

[  ]
A.

4

B.

3

C.

2

D.

1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)正整數(shù)n,設(shè)拋物線y2=2(2n+1)x,過P(2n,0)任作直線l交拋物線于An,Bn兩點(diǎn),則數(shù)列{
OA
n
OB
n
2(n+1)
}
的前n項(xiàng)和公式是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有下列命題:
①在函數(shù)y=cos(x-
π
4
)cos(x+
π
4
)的圖象中,相鄰兩個(gè)對(duì)稱中心的距離為π;
②函數(shù)y=log2|3x-m|的圖象關(guān)于直線x=
1
2
對(duì)稱,則m=
3
2
;
③關(guān)于x的方程ax2-2x+1=0有且僅有一個(gè)實(shí)數(shù)根,則實(shí)數(shù)a=1;
④設(shè)0≤x≤2π,且
1-sin2x
=sinx-cosx
,則x的取值范圍是
π
4
≤x≤
4

其中真命題的序號(hào)是
②④
②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)0≤x≤2π,且
1-2sinx.cosx
=sinx-cosx,則x的取值范圍是
[
π
4
4
]
[
π
4
,
4
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)fn(x)=xn+bx+c(n∈N+,b,c∈R)
(1)設(shè)n>2,b=1,c=-1,證明:fn(x)在區(qū)間(
35
,1)內(nèi)存在唯一的零點(diǎn);
(2)設(shè)n為偶數(shù),|fn(-1)|≤1,|fn(1)|≤1,求3b+c的最小值和最大值;
(3)設(shè)n=2,若對(duì)任意x1,x2∈[-1,1],有|f2(x1)-f2(x2)|≤9,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)0≤x≤2π,且
1-sin2x
=sinx-cosx
,則x的取值范圍是
π
4
≤x≤
4
π
4
≤x≤
4

查看答案和解析>>

同步練習(xí)冊(cè)答案