設拋物線的焦點為,已知為拋物線上的兩個動點,且滿足,過弦的中點作拋物線準線的垂線,垂足為,則的最大值為     .

試題分析:過作準線的垂線,垂足為,由圖可知,,根據(jù)拋物線的定義可知,所以.在中,根據(jù)余弦定理可知,所以
根據(jù)基本不等式的性質,所以上式可化為,即,所以
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線的方程為,直線的方程為,點關于直線的對稱點在拋物線上.
(1)求拋物線的方程;
(2)已知,點是拋物線的焦點,是拋物線上的動點,求的最小值及此時點的坐標;
(3)設點、是拋物線上的動點,點是拋物線與軸正半軸交點,是以為直角頂點的直角三角形.試探究直線是否經過定點?若經過,求出定點的坐標;若不經過,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線C:y2=2px,點P(-1,0)是其準線與x軸的焦點,過P的直線l與拋物線C交于A、B兩點.
(1)當線段AB的中點在直線x=7上時,求直線l的方程;
(2)設F為拋物線C的焦點,當A為線段PB中點時,求△FAB的面積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知是拋物線的焦點,點,在該拋物線上且位于軸的兩側,(其中為坐標原點),則面積之和的最小值是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

對任意非零實數(shù),定義的算法原理如右側程序框圖所示.設為函數(shù)的最大值,為雙曲線的離心率,則計算機執(zhí)行該運算后輸出的結果是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的左右頂點分別為,離心率
(1)求橢圓的方程;
(2)若點為曲線:上任一點(點不同于),直線與直線交于點,為線段的中點,試判斷直線與曲線的位置關系,并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知拋物線的焦點為,則________,
過點向其準線作垂線,記與拋物線的交點為,則_____.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系xOy中,已知橢圓C的中心在原點O,焦點在x軸上,短軸長為2,離心率為.
(1)求橢圓C的方程;
(2)設A,B是橢圓C上的兩點,△AOB的面積為.若A、B兩點關于x軸對稱,E為線段AB的中點,射線OE交橢圓C于點P.如果=t,求實數(shù)t的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

是任意實數(shù),則方程所表示的曲線一定不是(    )
A.直線B.雙曲線C.拋物線D.圓

查看答案和解析>>

同步練習冊答案