過點,在軸上和軸上的截距分別是且滿足的直線方程為___ ___

 

【答案】

【解析】設(shè)直線的斜率為k,所以直線方程為:y=k(x-2)+1.

由題意可知a=2-,b=2k+1,因為a=3b,所以2-=6k+3,解得k=-或k=-,故所求的直線方程為:x+3y+1=0或x+2y=0.

故答案為:x+3y+1=0或x+2y=0.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C的頂點為坐標(biāo)原點,橢圓C′的對稱軸是坐標(biāo)軸,拋物線C在x軸上的焦點恰好是橢圓C′的焦點
(Ⅰ)若拋物線C和橢圓C′都經(jīng)過點M(1,2),求拋物線C和橢圓C′的方程;
(Ⅱ)已知動直線l過點p(3,0),交拋物線C于A,B兩點,直線l′:x=2被以AP為直徑的圓截得的弦長為定值,求拋物線C的方程;
(Ⅲ)在(Ⅱ)的條件下,分別過A,B的拋物線C的兩條切線的交點E的軌跡為D,直線AB與軌跡D交于點F,求|EF|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•聊城一模)過點P(1,0)作曲線C:y=xk(x∈(0,+∞),k∈N*,k>1)的切線,切點為M1,設(shè)M1在x軸上的投影是點P1;又過點P1作曲線C的切線,切點為M2,設(shè)M2在x軸上的投影是點P2;…;依此下去,得到一系列點M1,M2,…Mn,…;設(shè)它們的橫坐標(biāo)a1,a2,…,
an…構(gòu)成數(shù)列為{an}.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)求證:an≥1+
n
k-1
;
(Ⅲ)當(dāng)k=2時,令bn=
n
an
,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分18分)本題共有3個小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分.

已知橢圓的方程為的三個頂點.

(1)若點滿足,求點的坐標(biāo);

(2)設(shè)直線交橢圓、兩點,交直線于點.若,證明:的中點;

(3)設(shè)點在橢圓內(nèi)且不在軸上,如何構(gòu)作過中點的直線,使得與橢圓的兩個交點滿足?令,點的坐標(biāo)是(-8,-1),若橢圓上的點滿足,求點、的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分18分)本題共有3個小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分.

已知橢圓的方程為,、的三個頂點.

(1)若點滿足,求點的坐標(biāo);

(2)設(shè)直線交橢圓兩點,交直線于點.若,證明:的中點;

(3)設(shè)點在橢圓內(nèi)且不在軸上,如何構(gòu)作過中點的直線,使得與橢圓的兩個交點、滿足?令,點的坐標(biāo)是(-8,-1),若橢圓上的點、滿足,求點、的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案