直線l:y=k(x-
2
)與曲線x2-y2=1(x>0)相交于A、B兩點(diǎn),則直線l傾斜角的取值范圍是( 。
A、{0,π)
B、(
π
4
,
π
2
)∪(
π
2
4
C、[0,
π
2
)∪(
π
2
,π)
D、(
π
4
,
4
考點(diǎn):雙曲線的簡(jiǎn)單性質(zhì)
專(zhuān)題:圓錐曲線中的最值與范圍問(wèn)題
分析:首先根據(jù)題意直線l:y=k(x-
2
)與曲線x2-y2=1(x>0)相交于A、B兩點(diǎn),進(jìn)一步判斷直線的斜率和漸近線的斜率的關(guān)系求出結(jié)果.
解答: 解:曲線x2-y2=1(x>0)的漸近線方程為:y=±x
直線l:y=k(x-
2
)與相交于A、B兩點(diǎn)
所以:直線的斜率k>1或k<-1
α∈(
π
4
4
)

由于直線的斜率存在:傾斜角α≠
π
2

故選:B
點(diǎn)評(píng):本題考查的知識(shí)要點(diǎn):直線與雙曲線的關(guān)系,直線的斜率和漸近線的斜率的關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

p:若x2+y2≠0,則x,y不全為零,q:若m>-2,則x2+2x-m=0有實(shí)根,則(  )
A、“p∨q”為真
B、“¬p”為真
C、“p∧q”為真
D、“¬q”為假

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知{an}是各項(xiàng)均為正數(shù)的等比數(shù)列,a1=
1
2
,且a1,a3,-a2成等差數(shù)列.
(1)求{an}的通項(xiàng)公式;
(2)求數(shù)列{an-n}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于集合P和Q,定義運(yùn)算P-Q={x|x∈P且x∉Q}.若P={x|log2x<1},Q={x||x-2|<1},則P-Q=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}為等差數(shù)列,{bn}為等比數(shù)列,且滿足:a1003+a1013=π,b6•b9=2,則tan
a1+a2015
1+b7b8
=( 。
A、1
B、-1
C、
3
3
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

OA
+
OB
+
OC
=
0
且|
OA
|=|
OB
|=1,|
OC
|=
2
,則△ABC的面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

高一某班的一次數(shù)學(xué)測(cè)試成績(jī)的莖葉圖和頻率分布圖都受到不同程度的破壞,但可見(jiàn)部分如下,據(jù)此解答如下問(wèn)題:

(Ⅰ)求分?jǐn)?shù)在[50,60)的頻率及全班人數(shù);
(Ⅱ)若要從分?jǐn)?shù)在[80,100]之間的試卷中任取兩份分析學(xué)生失分情況,在抽取的試卷中,求至少有一份分?jǐn)?shù)在[90,100]之間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(文)已知函數(shù)y=f(x)是偶函數(shù),它在(-∞,0]上單調(diào)遞增,則f(-3),f(
2
),f(π)的大小關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sin2wx+
3
sinwxsin(wx+
π
2
)(w>0)的最小正周期為π.
(1)求w的值;
(2)若不等式f(x)≥m對(duì)x∈[0,
3
]都成立,求m的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案