(08年龍巖一中沖刺文)(12分)

如圖,梯形中,,,的中點,將沿折起,使點折到點的位置,且二面角的大小為

(1)求證:

(2)求直線與平面所成角的大小

(3)求點到平面的距離

解析:(1)連結(jié),連結(jié),,

,又

,

,即平分

是正三角形,

,即,,

………4分

(2)過,連結(jié),設,則,,,

就是直線與平面所成的角。

是二面角的平面角,

,在中, ,

直線與平面所成角是………………8分

(3),在平面外, ,

點到面的距離即為點到面的距離,過點,垂足為, ,

的長即為點到面的距離,菱形中, , , ,

………………12分

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(08年龍巖一中沖刺文)(本題滿分14分)已知函數(shù)(其中),,

(1)求的取值范圍;

(2)方程有幾個實根?為什么?

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(08年龍巖一中沖刺理)(12分)

已知雙曲線的兩個焦點為,,為動點,若,為定值(其中>1),的最小值為.

(Ⅰ)求動點的軌跡的方程;

(Ⅱ)設點,過點作直線交軌跡,兩點,判斷的大小是否為定值?并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(08年龍巖一中沖刺理)(14分)

在直角坐標平面xoy上的一列點簡記為,若由構(gòu)成的數(shù)列滿足其中是y軸正方向相同的單位向量,則為T點列.

(1)判斷是否為T點列,并說明理由;

(2)若為T點列,且點的右上方,任取其中連續(xù)三點,判定的形狀(銳角三角形、直角三角形、鈍角三角形),并予以證明;

(3)若為T點列,正整數(shù)滿足.求證:

 

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(08年龍巖一中沖刺文)(12分)

已知O為坐標原點,,

(1)若,求的單調(diào)遞增區(qū)間;

(2)若的定義域為,值域為[2,5],求a,b的值.

查看答案和解析>>

同步練習冊答案