釣魚島及其附屬島嶼是中國固有領(lǐng)土,如圖:點A、B、C分別表示釣魚島、南小島、黃尾嶼,點C在點A的北偏東47°方向,點B在點C的南偏西36°方向,點B在點A的南偏東79°方向,且A、B兩點的距離約為3海里.

(1)求A、C兩點間的距離;(精確到0.01)

(2)某一時刻,我國一漁船在A點處因故障拋錨發(fā)出求救信號.一艘R國艦艇正從點C正東10海里的點P處以18海里/小時的速度接近漁船,其航線為PCA(直線行進),而我東海某漁政船正位于點A南偏西60°方向20海里的點Q處,收到信號后趕往救助,其航線為先向正北航行8海里至點M處,再折向點A直線航行,航速為22海里/小時.漁政船能否先于R國艦艇趕到進行救助?說明理由.

 

【答案】

(1)14.25海里;(2)漁政船能先于R國艦艇趕到進行救助.

【解析】

試題分析:(1)這是解三角形問題,圖形中,已知,要求,因此由正弦定理知應(yīng)該知道它們所對的兩角,由題中已知的三個方位角,可求出,,,故易求得結(jié)論;(2)只要求出兩船到達點的時間即可,國艦艇路程為,我漁政船路程為,這里要在中求出,已知,因此應(yīng)用余弦定理可求出,從而得出結(jié)論.

試題解析:(1)求得,  2分

海里.        4分

(2)R國艦艇的到達時間為:小時.  1分

中, 

海里,                     4分

所以漁政船的到達時間為:小時.  1 分

因為,所以漁政船先到.            1分

答:漁政船能先于R國艦艇趕到進行救助.    1分

考點:(1)正弦定理;(2)余弦定理.

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)釣魚島及其附屬島嶼是中國固有領(lǐng)土,如圖:點A、B、C分別表示釣魚島、南小島、黃尾嶼,點C在點A的北偏東47°方向,點B在點C的南偏西36°方向,點B在點A的南偏東79°方向,且A、B兩點的距離約為3海里.
(1)求A、C兩點間的距離;(精確到0.01)
(2)某一時刻,我國一漁船在A點處因故障拋錨發(fā)出求救信號.一艘R國艦艇正從點C正東10海里的點P處以18海里/小時的速度接近漁船,其航線為P→C→A(直線行進),而我東海某漁政船正位于點A南偏西60°方向20海里的點Q處,收到信號后趕往救助,其航線為先向正北航行8海里至點M處,再折向點A直線航行,航速為22海里/小時.漁政船能否先于R國艦艇趕到進行救助?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年上海市十三校高三12月聯(lián)考文科數(shù)學試卷(解析版) 題型:解答題

釣魚島及其附屬島嶼是中國固有領(lǐng)土,如圖:點A、B、C分別表示釣魚島、南小島、黃尾嶼,點C在點A的北偏東47°方向,點B在點C的南偏西36°方向,點B在點A的南偏東79°方向,且A、B兩點的距離約為3海里.

(1)求A、C兩點間的距離;(精確到0.01)

(2)某一時刻,我國一漁船在A點處因故障拋錨發(fā)出求救信號.一艘R國艦艇正從點C正東10海里的點P處以18海里/小時的速度接近漁船,其航線為PCA(直線行進),而我東海某漁政船正位于點A南偏西60°方向20海里的點Q處,收到信號后趕往救助,其航線為先向正北航行8海里至點M處,再折向點A直線航行,航速為22海里/小時.漁政船能否先于R國艦艇趕到進行救助?說明理由.

 

查看答案和解析>>

同步練習冊答案