11.如圖,在四面體ABCD中,$\overrightarrow{AB}=\overrightarrow a,\overrightarrow{AC}=\overrightarrow b,\overrightarrow{AD}$=$\overrightarrow c$,點M在AB上,且AM=$\frac{2}{3}$AB,點N是CD的中點,則$\overrightarrow{MN}$=( 。
A.$\frac{1}{2}\overrightarrow a-\frac{2}{3}\overrightarrow b+\frac{1}{2}\overrightarrow c$B.$-\frac{2}{3}\overrightarrow a+\frac{1}{2}\overrightarrow b+\frac{1}{2}\overrightarrow c$C.$\frac{1}{2}\overrightarrow a+\frac{1}{2}\overrightarrow b-\frac{1}{2}\overrightarrow c$D.$-\frac{2}{3}\overrightarrow a+\frac{2}{3}\overrightarrow b-\frac{1}{2}\overrightarrow c$

分析 由已知可得$\overrightarrow{MN}$=$\overrightarrow{MA}$+$\overrightarrow{AN}$=$-\frac{2}{3}$$\overrightarrow{AB}$+$\frac{1}{2}$$\overrightarrow{AC}$+$\frac{1}{2}$$\overrightarrow{AD}$,進而得到答案.

解答 解:∵點M在AB上,且AM=$\frac{2}{3}$AB,點N是CD的中點,
∴$\overrightarrow{MA}$=$-\frac{2}{3}$$\overrightarrow{AB}$,$\overrightarrow{AN}$=$\frac{1}{2}$$\overrightarrow{AC}$+$\frac{1}{2}$$\overrightarrow{AD}$,
∴$\overrightarrow{MN}$=$\overrightarrow{MA}$+$\overrightarrow{AN}$=$-\frac{2}{3}$$\overrightarrow{AB}$+$\frac{1}{2}$$\overrightarrow{AC}$+$\frac{1}{2}$$\overrightarrow{AD}$,
又∵$\overrightarrow{AB}=\overrightarrow a,\overrightarrow{AC}=\overrightarrow b,\overrightarrow{AD}$=$\overrightarrow c$,
∴$\overrightarrow{MN}$=$-\frac{2}{3}\overrightarrow a+\frac{1}{2}\overrightarrow b+\frac{1}{2}\overrightarrow c$,
故選:B.

點評 本題考查的知識點是向量在幾何中的應用,向量的線性運算,難度中檔.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

1.正三棱錐的頂點都在同一球面上.若該棱錐的高為3,底面邊長為3,則該球的表面積為( 。
A.B.C.16πD.$\frac{32π}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)$f(x)=2{cos^2}(x-\frac{π}{4})-\sqrt{3}$cos2x+1,
(1)求函數(shù)f(x)的最小正周期及對稱軸方程;
(2)若對任意實數(shù)x,不等式|f(x)-m|<2在x∈[$\frac{π}{4}$,$\frac{π}{2}$]上恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知a,b,c分別是△ABC的內(nèi)角A,B,C的對邊,BC邊上的高為$\frac{a}{2}$,則$\frac{c}$的最大值為$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.命題“若x>2,則x>1”的逆否命題是( 。
A.若x<2,則x<1B.若x≤2,則x≤1C.若x≤1,則x≤2D.若x<1,則x<2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.如圖,三棱柱ABC-A1B1C1中,點A1在平面ABC內(nèi)的射影O為AC的中點,A1O=2,AB⊥BC,AB=BC=$\sqrt{2}$點P在線段A1B上,且cos∠PAO=$\frac{2}{3}$,則直線AP與平面A1AC所成角的正弦值為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的離心率為e=$\frac{{\sqrt{2}}}{2}$,過焦點且垂直于x軸的直線被橢圓E截得的線段長為$\sqrt{2}$.
(1)求橢圓E的方程;
(2)斜率為k的直線l經(jīng)過原點O,與橢圓E相交于不同的兩點M,N,判斷并說明在橢圓E上是否存在點P,使得△PMN的面積為$\frac{{2\sqrt{2}}}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.如圖,在六面體ABCD-A1B1C1D1中,平面ABCD∥平面A1B1C1D1,DD1∥平面A1B1BA,DD1∥平面B1BCC1
(1)證明:DD1∥BB1
(2)已知六面體ABCD-A1B1C1D1的棱長均為2,且BB1⊥平面ABCD,∠BAD=60°,M,N分別為棱A1B1,B1C1的中點,求四面體D-MNB的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.如圖所示的程序框圖,運行程序后,輸出的結(jié)果等于( 。
A.6B.5C.4D.3

查看答案和解析>>

同步練習冊答案