已知函數(shù)f(x)=xm-且f(4)=.
(1)求m的值;
(2)判定f(x)的奇偶性;
(3)判斷f(x)在(0,+∞)上的單調(diào)性,并給予證明.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)二次函數(shù).
(1)求函數(shù)的最小值;
(2)問是否存在這樣的正數(shù),當(dāng)時,,且的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/71/8/jgfgm2.png" style="vertical-align:middle;" />?若存在,求出所有的的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,制圖工程師要用兩個同中心的邊長均為4的正方形合成一個八角形圖形.由對稱性,圖中8個三角形都是全等的三角形,設(shè).
(1)試用表示的面積;
(2)求八角形所覆蓋面積的最大值,并指出此時的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知是定義在上的奇函數(shù),且,若,有恒成立.
(1)判斷在上是增函數(shù)還是減函數(shù),并證明你的結(jié)論;
(2)若對所有恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)滿足對任意的恒有,且當(dāng)時,.
(1)求的值;
(2)判斷的單調(diào)性
(3)若,解不等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=3x-.
(1)若f(x)=2,求x的值;
(2)判斷x>0時,f(x)的單調(diào)性;
(3)若3tf(2t)+mf(t)≥0對于t∈恒成立,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
為了降低能源損耗,某體育館的外墻需要建造隔熱層.體育館要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元.該建筑物每年的能源消耗費(fèi)用C(單位:萬元)與隔熱層厚度(單位:cm)滿足關(guān)系:(,為常數(shù)),若不建隔熱層,每年能源消耗費(fèi)用為8萬元.設(shè)為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和.
(1)求的值及的表達(dá)式;
(2)隔熱層修建多厚時,總費(fèi)用達(dá)到最?并求出最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某通訊公司需要在三角形地帶區(qū)域內(nèi)建造甲、乙兩種通信信號加強(qiáng)中轉(zhuǎn)站,甲中轉(zhuǎn)站建在區(qū)域內(nèi),乙中轉(zhuǎn)站建在區(qū)域內(nèi).分界線固定,且=百米,邊界線始終過點(diǎn),邊界線滿足.
設(shè)()百米,百米.
(1)試將表示成的函數(shù),并求出函數(shù)的解析式;
(2)當(dāng)取何值時?整個中轉(zhuǎn)站的占地面積最小,并求出其面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
定義在[-1,1]上的奇函數(shù)f(x),已知當(dāng)x∈[-1,0]時,
f(x)=- (a∈R).
(1)求f(x)在[0,1]上的最大值;
(2)若f(x)是[0,1]上的增函數(shù),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com