【題目】已知是定義在上的奇函數(shù),且.
(1)求的解析式;
(2)判斷的單調(diào)性,并證明你的結論;
(3)解不等式 .
【答案】(1);(2)在上單調(diào)遞增,證明見解析;(3).
【解析】
(1)根據(jù)題意,由奇函數(shù)的性質(zhì)可得,又由,可得的值,代入函數(shù)的解析式即可得答案;
(2)設,由作差法分析與的大小關系,結合函數(shù)單調(diào)性的定義,即可得結論;
(3)利用函數(shù)的奇偶性以及單調(diào)性,可以將轉化為,解可得的取值范圍,即可得答案.
(1)∵是上的奇函數(shù),
∴,
∴,
又∵,
∴,解得,
∴;
(2)在上單調(diào)遞增,
證明:任意取,且,則
,
∵,
∴,,,,
∴,即,
∴在上單調(diào)遞增;
(3)∵,
∴,
易知是上的奇函數(shù),
∴,
∴,
又由(2)知是上的增函數(shù),
∴,
解得,
∴不等式的解集為.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若方程只有一解,求實數(shù)的取值范圍;
(Ⅱ)設函數(shù),若對任意正實數(shù), 恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)是定義在上的奇函數(shù).
(1)求函數(shù)的解析式;
(2)求不等式的解集;
(3)若在上有兩個零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在棱長為a的正方體ABCD-A1B1C1D1中,M,N分別是AA1,D1C1的中點,過D,M,N三點的平面與正方體的下底面A1B1C1D1相交于直線l.
(1)畫出直線l的位置,并簡單指出作圖依據(jù);
(2)設l∩A1B1=P,求線段PB1的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】由實數(shù)組成的集合A具有如下性質(zhì):若,且,那么.
(1)試問集合A能否恰有兩個元素且?若能,求出所有滿足條件的集合A;若不能,請說明理由;
(2)是否存在一個含有元素0的三元素集合A;若存在請求出集合,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)是定義在上的奇函數(shù),當時,.
(1)求在上的解析式;
(2)若,函數(shù),是否存在實數(shù)使得的最小值為,若存在,求的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于定義域為D的函數(shù),如果存在區(qū)間,同時滿足:①在內(nèi)是單調(diào)函數(shù);②當定義域是時,的值域也是,則稱是該函數(shù)的“優(yōu)美區(qū)間”.
(1)求證:是函數(shù)的一個“優(yōu)美區(qū)間”.
(2)求證:函數(shù)不存在“優(yōu)美區(qū)間”.
(3)已知函數(shù)()有“優(yōu)美區(qū)間”,當a變化時,求出的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】候鳥每年都要隨季節(jié)的變化而進行大規(guī)模的遷徙,研究某種鳥類的專家發(fā)現(xiàn),該種鳥類的飛行速度v(單位:m/s)與其耗氧量Q之間的關系為v=a+blog3 (其中a,b是實數(shù)).據(jù)統(tǒng)計,該種鳥類在靜止時其耗氧量為30個單位,而其耗氧量為90個單位時,其飛行速度為1m/s.
(1)求出a,b的值;
(2)若這種鳥類為趕路程,飛行的速度不能低于2m/s,則其耗氧量至少要多少個單位?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com