精英家教網(wǎng)如圖,在二面角α-l-β的棱l上有A,B兩點(diǎn),直線AC,BD分別在這個二面角的兩個半平面內(nèi),且都垂直于AB,若AB=4,AC=6,BD=8,CD=2
17
,則二面角α-l-β的大小為
 
分析:將向量
CD
轉(zhuǎn)化成
CD
=
CA
+
AB
+
BD
,然后等式兩邊同時平方表示出向量
CD
的模,再根據(jù)向量的數(shù)量積求出向量
CA
BD
的夾角,而兩個向量 的夾角就是二面角的大小.
解答:解:由條件,知
CA
AB
=0,
AB
BD
=0,
CD
=
CA
+
AB
+
BD

所以|
CD
|2=|
CA
|2+|
AB
|2+|
BD
|2+2
CA
AB
+2
AB
BD
+2
CA
BD

=62+42+82+2×6×8cos ?
CA
BD
>=(2
17
)
2

所以cos?
CA
,
BD
>=-
1
2
,即?
CA
,
BD
=120°,
所以二面角的大小為60°,
故答案為60°.
點(diǎn)評:本題主要考查了平面與平面之間的位置關(guān)系,考查空間想象能力、運(yùn)算能力和推理論證能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖:在二面角α-l-β中,A、B∈α,C、D∈l,ABCD為矩形,p∈β,PA⊥α,且PA=AD,M、N依次是AB、PC的中點(diǎn),
(1)求二面角α-l-β的大小
(2)求證:MN⊥AB
(3)求異面直線PA和MN所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖:在二面角α-l-β中,A、B∈α,C、D∈l,ABCD為矩形,p∈β,PA⊥α,且PA=AD,M、N依次是AB、PC的中點(diǎn),
(1)求二面角α-l-β的大小
(2)求證:MN⊥AB
(3)求異面直線PA和MN所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省舟山市岱山縣大衢中學(xué)高二(上)10月月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖:在二面角α-l-β中,A、B∈α,C、D∈l,ABCD為矩形,p∈β,PA⊥α,且PA=AD,M、N依次是AB、PC的中點(diǎn),
(1)求二面角α-l-β的大小
(2)求證:MN⊥AB
(3)求異面直線PA和MN所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年湖南省岳陽市華容縣一中高二(上)期末數(shù)學(xué)試卷(選修2-1及2-2第一節(jié))(解析版) 題型:填空題

如圖,在二面角α-l-β的棱l上有A,B兩點(diǎn),直線AC,BD分別在這個二面角的兩個半平面內(nèi),且都垂直于AB,若,則二面角α-l-β的大小為   

查看答案和解析>>

同步練習(xí)冊答案