如圖,已知橢圓中心在原點,F(xiàn)是焦點,A為頂點,準(zhǔn)線l(橢圓上的點到焦點的距離與到準(zhǔn)線的距離之比等于離心率)交x軸于點B,點P,Q在橢圓上,且PD⊥l于D,QF⊥AO,則①
|PF|
|PD|
;②
|QF|
|BF|
;③
|FO|
|AO|
;④
|AF|
|AB|
,其中比值為橢圓的離心率的有( 。
分析:①由橢圓的第二定義可得:
|PF|
|PD|
=e;
②過點Q作QM⊥l于點M,則四邊形BFQM是矩形,可得|QM|=|BF|,即可得出
|QF|
|BF|
=
|QF|
|QM|
=e;
③利用橢圓的性質(zhì)可得
|FO|
|AO|
=
c
a
=e
;
④利用橢圓的第二定義可得
|AF|
|AB|
=e.
解答:解:①由橢圓的第二定義可得:
|PF|
|PD|
=e;
②過點Q作QM⊥l于點M,則四邊形BFQM是矩形,可得|QM|=|BF|,∴
|QF|
|BF|
=
|QF|
|QM|
=e;
|FO|
|AO|
=
c
a
=e
;
④由橢圓的第二定義可得
|AF|
|AB|
=e.
綜上可知其中比值為橢圓的離心率為①②③④.
故選D.
點評:本題考查了橢圓的第一和第二定義,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知橢圓中心在原點,F(xiàn)是焦點,A為頂點,準(zhǔn)線l交x軸于點B,點P,Q在橢圓上,且PD⊥l于D,QF⊥AO,則①
|PF|
|PD|
;②
|QF|
|BF|
;③
|AO|
|BO|
;④
|AF|
|AB|
;⑤
|FO|
|AO|
,其中比值為橢圓的離心率的有( 。
A、1個B、3個C、4個D、5個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知橢圓中心在原點,F(xiàn)是焦點,A為頂點,準(zhǔn)線l交x軸于點B,點P,Q在橢圓上,且PD⊥l于D,QF⊥AO,則橢圓的離心率是①
|PF|
|PD|
;②
|QF|
|BF|
;③
|AO|
|BO|
;④
|AF|
|AB|
;⑤
|FO|
|AO|
,其中正確的是
①②③④⑤
①②③④⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年四川省成都九中高三(下)3月月考數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

如圖,已知橢圓中心在原點,F(xiàn)是焦點,A為頂點,準(zhǔn)線l交x軸于點B,點P,Q在橢圓上,且PD⊥l于D,QF⊥AO,則①;②;③;④;⑤,其中比值為橢圓的離心率的有( )

A.1個
B.3個
C.4個
D.5個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年四川省成都九中高三(下)3月月考數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

如圖,已知橢圓中心在原點,F(xiàn)是焦點,A為頂點,準(zhǔn)線l交x軸于點B,點P,Q在橢圓上,且PD⊥l于D,QF⊥AO,則①;②;③;④;⑤,其中比值為橢圓的離心率的有( )

A.1個
B.3個
C.4個
D.5個

查看答案和解析>>

同步練習(xí)冊答案