19.從符號∈、∉、=、⊆、?≠中選出適當?shù)囊粋填空
①a∈{a};
②{1,2}={2,1};
③a∉{(a,b)};
④∅?{a};
⑤{1,2}⊆{1,2,3}.

分析 利用元素與集合間的關系、集合與集合間的關系即可得出答案.

解答 解:利用元素與集合間的關系可得:a∈{a},a∉{(a,b)};
利用集合間的關系可得:{1,2}={2,1},∅?{a},{1,2}⊆{1,2,3}.
故答案為:∈,=,∉,?,⊆.

點評 本題考查了元素與集合間的關系、集合與集合間的關系的判斷,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

4.已知集合A={-2,3},B={x|lnx>1},則A∩B=( 。
A.{-2}B.{3}C.{-2,3}D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.若命題p:0是偶數(shù),命題q:2是3的約數(shù),則下列命題中為真的是( 。
A.p且qB.p或qC.非pD.以上都不對

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知實數(shù)變量x,y滿足$\left\{\begin{array}{l}x+y≥1\\ x-y≥0\\ 2mx-y-2≤0\end{array}\right.$,且目標函數(shù)z=3x+y的最大值為8,則實數(shù)m的值為( 。
A.$\frac{3}{2}$B.$\frac{1}{2}$C.2D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.下列幾個命題:
①若函數(shù)$f(x)={e^{-{{(x-m)}^2}}}$為偶函數(shù),則m=0;
②若f(x)的定義域為[0,1],則f(x+2)的定義域為[-2,-1];
③函數(shù)y=log2(-x+1)+2的圖象可由y=log2(-x-1)-2的圖象向上平移4個單位向左平移2個單位得到;
④若關于x方程|x2-2x-3|=m有兩解,則m=0或m>4;
其中正確的有①、②、④.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.用定義法證明$f(x)=\frac{1}{x+1}$在(-1,+∞)上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.a,b表示不同的直線,α,β,γ表示不同的平面.
①若α∩β=a,b?α,a⊥b,則α⊥β;
②若a?α,a垂直于β內任意一條直線,則α⊥β;
③若α⊥β,α∩β=a,α∩γ=b,則a⊥b;
④若a不垂直平面α,則a不可能垂直于平面α內的無數(shù)條直線;
⑤若a⊥α,b⊥β,a∥b,則α∥β.
上述五個命題中,正確命題的序號是( 。
A.①②③B.②④⑤C.④⑤D.②⑤

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.將函數(shù)y=sinx圖象上的所有點向右平移$\frac{π}{6}$個單位長度,得到曲線C1,再把曲線C1上所有點的橫坐標縮短為原來的$\frac{1}{2}$(縱坐標不變),得到函數(shù)y=f(x)的圖象. 
(Ⅰ)寫出函數(shù)y=f(x)的解析式,并求f(x)的周期;
(Ⅱ)若函數(shù)g(x)=f(x)+cos2x,求g(x)在[0,π]上的單調遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.在平面直角坐標系中,雙曲線C過點P(1,1),且其兩條漸近線的方程分別為2x+y=0和2x-y=0,則雙曲線C的標準方程為( 。
A.$\frac{x^2}{3}-\frac{{4{y^2}}}{3}=1$B.$\frac{{4{x^2}}}{3}-\frac{y^2}{3}=1$
C.$\frac{{4{x^2}}}{3}-\frac{y^2}{3}=1$或$\frac{x^2}{3}-\frac{{4{y^2}}}{3}=1$D.$\frac{{4{y^2}}}{3}-\frac{x^2}{3}=1$

查看答案和解析>>

同步練習冊答案