如圖,在三棱錐中,平面平面,. 過(guò)點(diǎn),垂足為,點(diǎn),分別為棱,的中點(diǎn).

求證:(1)平面平面;

(2).

 

【答案】

見(jiàn)解析

【解析】

[證明] (1)∵,垂足為,∴的中點(diǎn),又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013081313145110458155/SYS201308131315335265209681_DA.files/image005.png">是的中點(diǎn),

,∵平面,平面,∴∥平面;

同理∥平面. 又,∴平面∥平面.

(2)∵平面平面,且交線為,又平面,

平面,∵平面,∴

又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013081313145110458155/SYS201308131315335265209681_DA.files/image022.png">,、平面,

平面,∵平面,∴.

【考點(diǎn)定位】本小題主要考查直線與直線、直線與平面以及平面與平面的位置關(guān)系,考查空間想象能力和推理論證能力.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,側(cè)面PAD是正三角形,且與底面ABCD垂直,底面ABCD是邊長(zhǎng)為2的菱形,∠BAD=60°,N是PB中點(diǎn),過(guò)A、N、D三點(diǎn)的平面交PC于M.
(Ⅰ)求證:AD∥MN;
(Ⅱ)求證:平面PBC⊥平面ADMN.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•青島一模)如圖,在四棱錐P-ABCD中,底面ABCD為平行四邊形,N是PB中點(diǎn),過(guò)A、N、D三點(diǎn)的平面交PC于M.
(Ⅰ)求證:PD∥平面ANC;
(Ⅱ)求證:M是PC中點(diǎn);
(Ⅲ)若PD⊥底面ABCD,PA=AB,BC⊥BD,證明:平面PBC⊥平面ADMN.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:高三數(shù)學(xué)教學(xué)與測(cè)試 題型:044

如圖,在三棱錐P-ABC中,∠ACB=,∠B=,PC⊥平面ABC,AB=8,PC=6,M,N分別是PA,PB的中點(diǎn),設(shè)△MNC所在平面與△ABC所在平面交于直線l.(1)判斷l與MN的位置關(guān)系;(2)求點(diǎn)M到l的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐中,側(cè)面

是正三角形,且與底面垂直,底面是邊長(zhǎng)為2的菱形,,中點(diǎn),過(guò)、、三點(diǎn)的平面交. 

(1)求證:;   (2)求證:中點(diǎn);(3)求證:平面⊥平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在三棱錐P—ABC中,∠ACB=90°,∠B=60°,PC⊥平面ABC,AB=8,PC=6,M、N分別是PA、PB的中點(diǎn),設(shè)△MNC所在平面與△ABC所在平面交于直線l,

(1)判斷l與MN的位置關(guān)系;

(2)求點(diǎn)M到l的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案