如圖,邊長(zhǎng)為2的正方形ABCD中,
(1)點(diǎn)E是AB的中點(diǎn),點(diǎn)F是BC的中點(diǎn),將△AED,△DCF分別沿DE,DF折起,使A,C兩點(diǎn)重合于點(diǎn)A'.求證:A'D⊥EF
(2)當(dāng)BE=BF=
14
BC時(shí),求三棱錐A'-EFD的體積.
分析:(1)由正方形ABCD知∠DCF=∠DAE=90°,得A'D⊥A'F且A'D⊥A'E,所以A'D⊥平面A'EF.結(jié)合EF?平面A'EF,得A'D⊥EF;
(2)由勾股定理的逆定理,得△A'EF是以EF為斜邊的直角三角形,而A'D是三棱錐D-A'EF的高線(xiàn),可以算出三棱錐D-A'EF的體積,即為三棱錐A'-DEF的體積.
解答:解:(1)由正方形ABCD知,∠DCF=∠DAE=90°,
∴A'D⊥A'F,A'D⊥A'E,
∵A'E∩A'F=A',A'E、A'F⊆平面A'EF.
∴A'D⊥平面A'EF.
又∵EF?平面A'EF,
∴A'D⊥EF.
(2)由四邊形ABCD為邊長(zhǎng)為2的正方形
故折疊后A′D=2,A′E=A′F=
3
2
,EF=
2
2

則cos∠EA′F=
(
3
2
)2+(
3
2
)2-12
3
2
×
3
2
=
8
9

則sin∠EA′F=
17
9

故△EA′F的面積S△EA′F=
1
2
•A′E•A′F•sin∠EA′F=
17
8

由(1)中A′D⊥平面A′EF
可得三棱錐A'-EFD的體積V=
1
3
×
17
8
×2=
17
12
點(diǎn)評(píng):本題以正方形的翻折為載體,證明兩直線(xiàn)異面垂直并且求三棱錐的體積,著重考查空間垂直關(guān)系的證明和錐體體積公式等知識(shí),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖放置的邊長(zhǎng)為1的正三角形PAB沿x軸滾動(dòng),設(shè)頂點(diǎn)A(x,y)的縱坐標(biāo)與橫坐標(biāo)的函數(shù)關(guān)系式是y=f(x),則f(x)在區(qū)間[-2,1]上的解析式是
 
;(說(shuō)明:“正三角形PAB沿x軸滾動(dòng)”包括沿x軸正方向和沿x軸負(fù)方向滾動(dòng).沿x軸正方向滾動(dòng)指的是先以頂點(diǎn)A為中心順時(shí)針旋轉(zhuǎn),當(dāng)頂點(diǎn)B落在x軸上時(shí),再以頂點(diǎn)B為中心順時(shí)針旋轉(zhuǎn),如此繼續(xù);類(lèi)似地,正三角形PAB也可以沿x軸負(fù)方向逆時(shí)針滾動(dòng))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•洛陽(yáng)一模)如圖放置的邊長(zhǎng)為1的正三角形ABC沿x軸的正方向滾動(dòng),設(shè)頂點(diǎn)A(x,y)的縱坐標(biāo)與橫坐標(biāo)的函數(shù)關(guān)系是y=f(x).則f(x)在兩個(gè)相鄰零點(diǎn)間的圖象與x軸圍成的面積是
3
+
3
4
3
+
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,過(guò)正方形ABCD的中心O作OP⊥平面ABCD,已知正方形的邊長(zhǎng)為2,OP=2,連接AP、BP、CP、DP,M、N分別是AB、BC的中點(diǎn),以O(shè)為原點(diǎn),射線(xiàn)OM、ON、OP分別為Ox軸、Oy軸、Oz軸的正方向建立空間直角坐標(biāo)系.若E、F分別為PA、PB的中點(diǎn),求A、B、C、D、E、F的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖放置的邊長(zhǎng)為2的正方形PABC沿x軸滾動(dòng).設(shè)頂點(diǎn)P(x,y)的縱坐標(biāo)與橫坐標(biāo)的函數(shù)關(guān)系是y=f(x),則f(x)的最小正周期為
 
;  y=f(x)在其兩個(gè)相鄰零點(diǎn)間的圖象與x軸所圍區(qū)域的面積為
 

(說(shuō)明:“正方形PABC 沿x軸滾動(dòng)”包括沿x軸正方向和沿x軸負(fù)方向滾動(dòng).沿x軸正方向滾動(dòng)指的是先以頂點(diǎn)A為中心順時(shí)針旋轉(zhuǎn),當(dāng)頂點(diǎn)B落在x軸上時(shí),再以頂點(diǎn)B為中心順時(shí)針旋轉(zhuǎn),如此繼續(xù).類(lèi)似地,正方形PABC可以沿x軸負(fù)方向滾動(dòng).)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年廣東省四校聯(lián)考高三(上)期末數(shù)學(xué)試卷(解析版) 題型:填空題

如圖放置的邊長(zhǎng)為1的正三角形PAB沿x軸滾動(dòng),設(shè)頂點(diǎn)A(x,y)的縱坐標(biāo)與橫坐標(biāo)的函數(shù)關(guān)系式是y=f(x),則f(x)在區(qū)間[-2,1]上的解析式是    ;(說(shuō)明:“正三角形PAB沿x軸滾動(dòng)”包括沿x軸正方向和沿x軸負(fù)方向滾動(dòng).沿x軸正方向滾動(dòng)指的是先以頂點(diǎn)A為中心順時(shí)針旋轉(zhuǎn),當(dāng)頂點(diǎn)B落在x軸上時(shí),再以頂點(diǎn)B為中心順時(shí)針旋轉(zhuǎn),如此繼續(xù);類(lèi)似地,正三角形PAB也可以沿x軸負(fù)方向逆時(shí)針滾動(dòng))

查看答案和解析>>

同步練習(xí)冊(cè)答案