如圖,在平面直角坐標(biāo)系xOy中,橢圓C:=1(a>b>0)的離心率為,以原點(diǎn)為圓心,橢圓C的短半軸長為半徑的圓與直線x-y+2=0相切.
(1)求橢圓C的方程;
(2)已知點(diǎn)P(0,1),Q(0,2).設(shè)M、N是橢圓C上關(guān)于y軸對(duì)稱的不同兩點(diǎn),直線PM與QN相交于點(diǎn)T,求證:點(diǎn)T在橢圓C上.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系xOy中,已知定點(diǎn)A(-4,0)、B(4,0),動(dòng)點(diǎn)P與A、B連線的斜率之積為-.
(1)求點(diǎn)P的軌跡方程;
(2)設(shè)點(diǎn)P的軌跡與y軸負(fù)半軸交于點(diǎn)C.半徑為r的圓M的圓心M在線段AC的垂直平分線上,且在y軸右側(cè),圓M被y軸截得的弦長為r.
(ⅰ)求圓M的方程;
(ⅱ)當(dāng)r變化時(shí),是否存在定直線l與動(dòng)圓M均相切?如果存在,求出定直線l的方程;如果不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C的兩個(gè)焦點(diǎn)是)和,并且經(jīng)過點(diǎn),拋物線的頂點(diǎn)E在坐標(biāo)原點(diǎn),焦點(diǎn)恰好是橢圓C的右頂點(diǎn)F.
(1)求橢圓C和拋物線E的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)F作兩條斜率都存在且互相垂直的直線l1、l2,l1交拋物線E于點(diǎn)A、B,l2交拋物線E于點(diǎn)G、H,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知曲線C:(5-m)x2+(m-2)y2=8(m∈R).
(1)若曲線C是焦點(diǎn)在x軸上的橢圓,求m的取值范圍;
(2)設(shè)m=4,曲線C與y軸的交點(diǎn)為A,B(點(diǎn)A位于點(diǎn)B的上方),直線y=kx+4與曲線C交于不同的兩點(diǎn)M,N,直線y=1與直線BM交于點(diǎn)G.求證:A,G,N三點(diǎn)共線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓的中心在原點(diǎn),對(duì)稱軸為坐標(biāo)軸,且長軸長是短軸長的2倍.又點(diǎn)P(4,1)在橢圓上,求該橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
是否同時(shí)存在滿足下列條件的雙曲線,若存在,求出其方程,若不存在,說明理由.
(1)焦點(diǎn)在軸上的雙曲線漸近線方程為;
(2)點(diǎn)到雙曲線上動(dòng)點(diǎn)的距離最小值為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,若,且.
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)已知定點(diǎn),若斜率為的直線過點(diǎn)并與軌跡交于不同的兩點(diǎn),且對(duì)于軌跡上任意一點(diǎn),都存在,使得成立,試求出滿足條件的實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
平面內(nèi)與兩定點(diǎn)、()連線的斜率之積等于非零常數(shù)m的點(diǎn)的軌跡,加上、兩點(diǎn)所成的曲線C可以是圓、橢圓或雙曲線.求曲線C的方程,并討論C的形狀與m值得關(guān)系.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com