9.函數(shù)y=e2x-1的零點是0.

分析 令y=0,求出x的值,即函的零點即可.

解答 解:令y=0,即e2x=1,解得:x=0,
故答案為:0.

點評 本題考查了解方程問題,考查函數(shù)的零點的定義,是一道基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

5.下列對古典概型的說法中正確的是( 。
①試驗中所有可能出現(xiàn)的基本事件只有有限個;
②每個事件出現(xiàn)的可能性相等;
③每個基本事件出現(xiàn)的可能性相等;
④基本事件總數(shù)為n,隨機事件A若包含k個基本事件,則P(A)=$\frac{k}{n}$.
A.②④B.①③④C.①④D.③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知橢圓$\frac{{x}^{2}}{9+k}$+$\frac{{y}^{2}}{5-k}$=1的離心率為$\frac{1}{2}$,則實數(shù)k的值為( 。
A.-1B.47C.-1或-3D.-1或3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.在△ABC中,角A,B,C所對的邊分別為a,b,c.已知B≠$\frac{π}{2}$,且3cosC+c•cosB=$\frac{3sinA}{sinB}$
(1)求b的值;
(2)若B=$\frac{π}{3}$,求△ABC周長的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.若不等式$a<x+\frac{4}{x}$對?x∈(0,+∞)恒成立,則實數(shù)a的取值范圍是(-∞,4).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.過點P(0,1),且與直線2x+3y-4=0垂直的直線方程為3x-2y+2=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知F是橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左焦點,A,B為橢圓C的左、右頂點,點P在橢圓C上,且PF⊥x軸,過點A的直線與線段PF交與點M,與y軸交與點E,直線BM與y軸交于點N,若NE=2ON,則橢圓C的離心率為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.二次不等式-$\frac{a}{3}$x2+2bx-c<0的解集是全體實數(shù)的充要條件是( 。
A.$\left\{\begin{array}{l}{a>0}\\{4^{2}-\frac{4}{3}ac<0}\end{array}\right.$B.$\left\{\begin{array}{l}{a>0}\\{4^{2}-\frac{4}{3}ac>0}\end{array}\right.$C.$\left\{\begin{array}{l}{a<0}\\{4^{2}-\frac{4}{3}ac>0}\end{array}\right.$D.$\left\{\begin{array}{l}{a<0}\\{4^{2}-\frac{4}{3}ac<0}\end{array}\right.$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.如圖,已知橢圓$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$e=\frac{{\sqrt{3}}}{2}$,P為橢圓E上的動點,P到點M(0,2)的距離的最大值為$\frac{2}{3}\sqrt{21}$,直線l交橢圓于A(x1,y1)、B(x2,y2)兩點.
(1)求橢圓E的方程;
(2)若以P為圓心的圓的半徑為$\frac{2}{5}\sqrt{5}$,且圓P與OA、OB相切.
(i)是否存在常數(shù)λ,使x1x2+λy1y2=0恒成立?若存在,求出常數(shù)λ;若不存在,說明理由;
(ii)求△OAB的面積.

查看答案和解析>>

同步練習冊答案