已知雙曲線C:
x2
a2
-
y2
b2
=1
(a>0,b>0),其中一個(gè)焦點(diǎn)為F(2,0),且F到一條漸近線的距離為
3

(1)求雙曲線C的方程;
(2)已知直線x-y+m=0與雙曲線C交于不同的兩點(diǎn)A、B,且線段AB的中點(diǎn)在拋物線y2=-2x上,求m的值.
分析:(1)由題意
c=2
b=
3
,解得:a=1,c=2,由此能求出雙曲線C的方程.
(2)設(shè)A(x1,y1),B(x2,y2),設(shè)中點(diǎn)為M,有
x
2
1
-
y
2
1
3
=1
x
2
2
-
y
2
2
3
=1
,由此能求出m的值.
解答:解:(1)由題意
c=2
b=
3

解得:a=1,c=2,
∴b2=3
方程為:x2-
y2
3
=1

(2)設(shè)A(x1,y1),B(x2,y2),
設(shè)中點(diǎn)為M
x
2
1
-
y
2
1
3
=1
x
2
2
-
y
2
2
3
=1
,
得:
y1-y2
x1-x2
=
3(x1+x2)
y1+y2
=
3×2x
y
=
3
kOM
,
即:kOM=3
y=3x
y2=-2x
,
得:M(0,0)或(-
2
9
,-
2
3

從而m=0或-
4
9
點(diǎn)評(píng):本題主要考查雙曲線標(biāo)準(zhǔn)方程,簡(jiǎn)單幾何性質(zhì),直線與雙曲線的位置關(guān)系,雙曲線的簡(jiǎn)單性質(zhì)等基礎(chǔ)知識(shí).考查運(yùn)算求解能力,推理論證能力;考查函數(shù)與方程思想,化歸與轉(zhuǎn)化思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•許昌三模)已知雙曲線c:
x2
a
-
y2
b
=1(a>.,b>0)的半焦距為c,過(guò)左焦點(diǎn)且斜率為1的直線與雙曲線C的左、右支各有一個(gè)交點(diǎn),若拋物線y2=4cx的準(zhǔn)線被雙曲線截得的線段長(zhǎng)大于
2
2
3
be2.(e為雙曲線c的離心率),則e的取值范同是
2
3
2
,
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•寧波模擬)已知雙曲線
x2
a
-
y2
a2+a+1
=1
的離心率的范圍是數(shù)集M,設(shè)p:“k∈M”; q:“函數(shù)f(x)=
lg
x-1
x-2
  x<1
2x-k       x≥1
的值域?yàn)镽”.則P是Q成立的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:寧波模擬 題型:單選題

已知雙曲線
x2
a
-
y2
a2+a+1
=1
的離心率的范圍是數(shù)集M,設(shè)p:“k∈M”; q:“函數(shù)f(x)=
lg
x-1
x-2
  x<1
2x-k       x≥1
的值域?yàn)镽”.則P是Q成立的( 。
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知雙曲線c:
x2
a
-
y2
b
=1(a>.,b>0)的半焦距為c,過(guò)左焦點(diǎn)且斜率為1的直線與雙曲線C的左、右支各有一個(gè)交點(diǎn),若拋物線y2=4cx的準(zhǔn)線被雙曲線截得的線段長(zhǎng)大于
2
2
3
be2.(e為雙曲線c的離心率),則e的取值范同是______.

查看答案和解析>>

同步練習(xí)冊(cè)答案