【題目】在三棱錐中,底面是邊長(zhǎng)為6的正三角形,底面,且與底面所成的角為

1)求三棱錐的體積;

2)若的中點(diǎn),求異面直線所成角的大。ńY(jié)果用反三角函數(shù)值表示).

【答案】(1)(2)

【解析】

1)由底面,可得與平面所成的角,且,因此在,,,代入求值即可;

2)設(shè)為棱的中點(diǎn),連接,可得,的夾角為異面直線所成的角,即為,由求得,在利用余弦定理即可求出

解:(1)因?yàn)?/span>平面,所以與平面所成的角,

與平面所成的角為,可得,

因?yàn)?/span>平面,平面,所以,

,可知,

所以

2)設(shè)為棱的中點(diǎn),連接,

分別是棱的中點(diǎn),可得,

所以的夾角為異面直線所成的角,即為,

因?yàn)?/span>平面,平面,所以,,

,,,

所以,

,

所以,

故異面直線所成的角為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為,(t為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線C1ρ2cosθ,

(1)求C1C2交點(diǎn)的直角坐標(biāo);

(2)若直線l與曲線C1,C2分別相交于異于原點(diǎn)的點(diǎn)M,N,求|MN|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱錐中,是等邊三角形,是線段的中點(diǎn),是線段上靠近的四等分點(diǎn),平面平面.

1)求證:;

2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線過(guò)點(diǎn),傾斜角為,在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸的極坐標(biāo)系中,曲線的方程為.

1)寫(xiě)出直線的參數(shù)方程和曲線的直角坐標(biāo)方程;

2)若直線與曲線相交于兩點(diǎn),設(shè)點(diǎn),的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知. 對(duì)于函數(shù)、,若存在常數(shù),,使得,不等式都成立,則稱(chēng)直線是函數(shù)的分界線.

1)討論函數(shù)的單調(diào)性;

2)當(dāng)時(shí),試探究函數(shù)是否存在“分界線”?若存在,求出分界線方程;若不存在說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果對(duì)一切正實(shí)數(shù),不等式恒成立,則實(shí)數(shù)的取值范圍是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019625日,《固體廢物污染環(huán)境防治法(修訂草案)》初次提請(qǐng)全國(guó)人大常委會(huì)審議,草案對(duì)“生活垃圾污染環(huán)境的防治”進(jìn)行了專(zhuān)章規(guī)定.草案提出,國(guó)家推行生活垃圾分類(lèi)制度.為了了解人民群眾對(duì)垃圾分類(lèi)的認(rèn)識(shí),某市環(huán)保部門(mén)對(duì)該市市民進(jìn)行了一次垃圾分類(lèi)網(wǎng)絡(luò)知識(shí)問(wèn)卷調(diào)查,每一位市民僅有一次參加機(jī)會(huì),通過(guò)隨機(jī)抽樣,得到參加問(wèn)卷調(diào)查的1000人的得分(滿(mǎn)分:100分)數(shù)據(jù),統(tǒng)計(jì)結(jié)果如表所示:

得分

頻數(shù)

25

150

200

250

225

100

50

1)由頻數(shù)分布表可以認(rèn)為,此次問(wèn)卷調(diào)查的得分服從正態(tài)分布近似為這1000人得分的平均值(同一組數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作為代表),請(qǐng)利用正態(tài)分布的知識(shí)求;

2)在(1)的條件下,市環(huán)保部門(mén)為此次參加問(wèn)卷調(diào)查的市民制定如下獎(jiǎng)勵(lì)方案:

①得分不低于 “的可以獲贈(zèng)2次隨機(jī)話費(fèi),得分低于的可以獲贈(zèng)1次隨機(jī)話費(fèi);

②每次獲贈(zèng)的隨機(jī)話費(fèi)和對(duì)應(yīng)的概率為:

獲贈(zèng)的隨機(jī)話費(fèi)(單位:元)

20

40

概率

現(xiàn)市民小王要參加此次問(wèn)卷調(diào)查,記(單位:元)為該市民參加問(wèn)卷調(diào)查獲贈(zèng)的話費(fèi),求的分布列及數(shù)學(xué)期望.

附:①;②若,則,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)年的純利潤(rùn)為萬(wàn)元,因設(shè)備老化等原因,企業(yè)的生產(chǎn)能力將逐年下降,若不進(jìn)行技術(shù)改造,預(yù)測(cè)從今年(年)起每年比上一年純利潤(rùn)減少萬(wàn)元,今年初該企業(yè)一次性投入資金萬(wàn)元進(jìn)行技術(shù)改造,預(yù)計(jì)在未扣除技術(shù)改造資金的情況下,第年(今年為第一年)的利潤(rùn)為萬(wàn)元(為正整數(shù)).

1)設(shè)從今年起的前年,若該企業(yè)不進(jìn)行技術(shù)改造的累計(jì)純利潤(rùn)為萬(wàn)元,進(jìn)行技術(shù)改造后的累計(jì)純利潤(rùn)為萬(wàn)元(須扣除技術(shù)改造資金),求,的表達(dá)式;

2)以上述預(yù)測(cè),從今年起該企業(yè)至少經(jīng)過(guò)多少年后,進(jìn)行技術(shù)改造后的累計(jì)純利潤(rùn)超過(guò)不進(jìn)行技術(shù)改造的累計(jì)純利潤(rùn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 mn 是兩條不同的直線,αβ、γ是三個(gè)不同的平面,下列命題中正確的是(

A.αβ βγ ,則αγ

B. , , mn ,則αβ

C. mn 是異面直線, , mβ , , nα ,則αβ

D.平面α內(nèi)有不共線的三點(diǎn)到平面 β的距離相等,則αβ

查看答案和解析>>

同步練習(xí)冊(cè)答案