等差數(shù)列{an}中,a1+a3=12,a2+a4=6,求這個(gè)數(shù)列的通項(xiàng)公式an及它的前n項(xiàng)和Sn

解:由已知得:2a1+2d=12,2a1+4d=6 (2分)
解得a1=9,d=-3 (6分)
∴an=9-3(n-1)=12-3n (8分)
∴Sn===-n2+n (10分)
分析:利用等差數(shù)列的通項(xiàng)公式,借助于條件a1+a3=12,a2+a4=6,可求a1,d的值,從而可求 數(shù)列的通項(xiàng)公式an及它的前n項(xiàng)和Sn
點(diǎn)評(píng):本題考查等差數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式,是基礎(chǔ)題.解題時(shí)要認(rèn)真審題,正確運(yùn)用公式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}中,a1=-4,且a1、a3、a2成等比數(shù)列,使{an}的前n項(xiàng)和Sn<0時(shí),n的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列﹛an﹜中,a3=5,a15=41,則公差d=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an }中,an≠0,且 an-1-an2+an+1=0,前(2n-1)項(xiàng)和S2n-1=38,則n等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等差數(shù)列{an}中,設(shè)S1=10,S2=20,則S10的值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)在等差數(shù)列{an}中,d=2,a15=-10,求a1及Sn
(2)在等比數(shù)列{an}中,a3=
3
2
S3=
9
2
,求a1及q.

查看答案和解析>>

同步練習(xí)冊(cè)答案