【題目】如圖,在正六棱錐中,已知底邊為2,側(cè)棱與底面所成角為.

1)求該六棱錐的體積;

2)求證:

【答案】112;(2)證明見(jiàn)解析.

【解析】

1)連結(jié)AD,過(guò)PPO⊥底面ABCD,交AD于點(diǎn)O,則PA2AO4,由此能求出該六棱錐的體積.

2)連結(jié)CE,交AD于點(diǎn)O,連結(jié)PG,推導(dǎo)出ADCEPGCE,從而CE⊥平面PAD,由此能證明PACE

∵在正六棱錐PABCDEF中,底邊長(zhǎng)為2,側(cè)棱與底面所成角為60°

連結(jié)AD,過(guò)PPO⊥底面ABCD,交AD于點(diǎn)O,

AODO2,∠PAO60°,∴PA2AO4,

PO2

SABCDEF)=6,

∴該六棱錐的體積V12

2)連結(jié)CE,交AD于點(diǎn)O,連結(jié)PG,

DECDAEAD,∴ADCEOCE中點(diǎn),

PAPC,∴PGCE,

PGADG,∴CE⊥平面PAD,

PA平面PAD,∴PACE

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為t為參數(shù)),以O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρρ2sinθ)=1

1)求C的直角坐標(biāo)方程;

2)設(shè)直線ly軸相交于P,與曲線C相交于AB兩點(diǎn),且|PA|+|PB|2,求點(diǎn)O到直線l的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將邊長(zhǎng)為1的正方形ABCD沿x軸正向滾動(dòng),先以A為中心順時(shí)針旋轉(zhuǎn),當(dāng)B落在x軸時(shí),又以B為中心順時(shí)針旋轉(zhuǎn),如此下去,設(shè)頂點(diǎn)C滾動(dòng)時(shí)的曲線方程為,則下列說(shuō)法不正確的是

A.恒成立B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx,gx)=f+1kRk≠0),則下列關(guān)于函數(shù)yf[gx]+1的零點(diǎn)個(gè)數(shù)判斷正確的是(

A.當(dāng)k0時(shí),有2個(gè)零點(diǎn);當(dāng)k0時(shí),有4個(gè)零點(diǎn)

B.當(dāng)k0時(shí),有4個(gè)零點(diǎn);當(dāng)k0時(shí),有2個(gè)零點(diǎn)

C.無(wú)論k為何值,均有2個(gè)零點(diǎn)

D.無(wú)論k為何值,均有4個(gè)零點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,P是拋物線Ey24x上的動(dòng)點(diǎn),F是拋物線E的焦點(diǎn).

1)求|PF|的最小值;

2)點(diǎn)B,Cy軸上,直線PB,PC與圓(x12+y21相切.當(dāng)|PF|[46]時(shí),求|BC|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近年來(lái),人們的支付方式發(fā)生了巨大轉(zhuǎn)變,使用移動(dòng)支付購(gòu)買(mǎi)商品已成為一部分人的消費(fèi)習(xí)慣.某企業(yè)為了解該企業(yè)員工兩種移動(dòng)支付方式的使用情況,從全體員工中隨機(jī)抽取了100人,統(tǒng)計(jì)了他們?cè)谀硞(gè)月的消費(fèi)支出情況.發(fā)現(xiàn)樣本中兩種支付方式都沒(méi)有使用過(guò)的有5人;使用了、兩種方式支付的員工,支付金額和相應(yīng)人數(shù)分布如下:

支付金額(元)

支付方式

大于2000

使用

18

29

23

使用

10

24

21

依據(jù)以上數(shù)據(jù)估算:若從該公司隨機(jī)抽取1名員工,則該員工在該月兩種支付方式都使用過(guò)的概率為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下表列出了1058歲兒童的體重x(單位kg)(這是容易測(cè)得的)和體積y(單位dm3)(這是難以測(cè)得的),繪制散點(diǎn)圖發(fā)現(xiàn),可用線性回歸模型擬合yx的關(guān)系:

體重x

17.00 10.50 13.80 15.70 11.90 10.20 15.00 17.80 16.00 12.10

體積y

16. 70 10.40 13.50 15.70 11.60 10.00 14.50 17.50 15.40 11.70

(1)y關(guān)于x的線性回歸方程(系數(shù)精確到0.01)

(2)5歲兒童的體重為13.00kg,估測(cè)此兒童的體積.

附注:參考數(shù)據(jù):,,,

,137×14=1918.00

參考公式:回歸方程中斜率和截距的最小二乘法估計(jì)公式分別為:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2011年國(guó)際數(shù)學(xué)協(xié)會(huì)正式宣布,將每年的3月14日設(shè)為國(guó)際數(shù)學(xué)節(jié),來(lái)源于中國(guó)古代數(shù)學(xué)家祖沖之的圓周率。公元263年,中國(guó)數(shù)學(xué)家劉徽用“割圓術(shù)”計(jì)算圓周率,計(jì)算到圓內(nèi)接3072邊形的面積,得到的圓周率是.公元480年左右,南北朝時(shí)期的數(shù)學(xué)家祖沖之進(jìn)一步得出精確到小數(shù)點(diǎn)后7位的結(jié)果,給出不足近似值3.1415926和過(guò)剩近似值3.1415927,還得到兩個(gè)近似分?jǐn)?shù)值,密率和約率。大約在公元530年,印度數(shù)學(xué)大師阿耶波多算出圓周率約為).在這4個(gè)圓周率的近似值中,最接近真實(shí)值的是( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,射線的方程為,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的方程為.一只小蟲(chóng)從點(diǎn)沿射線向上以單位/min的速度爬行

1)以小蟲(chóng)爬行時(shí)間為參數(shù),寫(xiě)出射線的參數(shù)方程;

2)求小蟲(chóng)在曲線內(nèi)部逗留的時(shí)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案