【題目】△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知sinA+ cosA=0,a=2 ,b=2.
(Ⅰ)求c;
(Ⅱ)設(shè)D為BC邊上一點,且AD⊥AC,求△ABD的面積.
【答案】解:(Ⅰ)∵sinA+ cosA=0,
∴tanA= ,
∵0<A<π,
∴A= ,
由余弦定理可得a2=b2+c2﹣2bccosA,
即28=4+c2﹣2×2c×(﹣ ),
即c2+2c﹣24=0,
解得c=﹣6(舍去)或c=4,
(Ⅱ)∵c2=b2+a2﹣2abcosC,
∴16=28+4﹣2×2 ×2×cosC,
∴cosC= ,
∴sinC= ,
∴tanC=
在Rt△ACD中,tanC= ,
∴AD= ,
∴S△ACD= ACAD= ×2× = ,
∵S△ABC= ABACsin∠BAD= ×4×2× =2 ,
∴S△ABD=S△ABC﹣S△ADC=2 ﹣ =
【解析】(Ⅰ)先根據(jù)同角的三角函數(shù)的關(guān)系求出A,再根據(jù)余弦定理即可求出,
(Ⅱ)先根據(jù)夾角求出cosC,求出AD的長,再求出△ABC和△ADC的面積,即可求出△ABD的面積.
【考點精析】解答此題的關(guān)鍵在于理解同角三角函數(shù)基本關(guān)系的運用的相關(guān)知識,掌握同角三角函數(shù)的基本關(guān)系:;;(3) 倒數(shù)關(guān)系:.
科目:高中數(shù)學 來源: 題型:
【題目】已知圓M的圓心在直線上,且經(jīng)過點A(-3,0),B(1,2).
(1)求圓M的方程;
(2)直線與圓M相切,且在y軸上的截距是在x軸上截距的兩倍,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè) ,曲線y=f(x)在點(1,f(1))處的切線與直線2x+y+1=0垂直.
(1)求a的值;
(2)若x∈[1,+∞),f(x)≤m(x﹣1)恒成立,求m的范圍.
(3)求證: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x﹣1﹣alnx.
(Ⅰ)若 f(x)≥0,求a的值;
(Ⅱ)設(shè)m為整數(shù),且對于任意正整數(shù)n,(1+ )(1+ )…(1+ )<m,求m的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(14分)在四棱錐P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E為PD的中點,PA=2AB=2.
(Ⅰ)求四棱錐P-ABCD的體積V;
(Ⅱ)若F為PC的中點,求證PC⊥平面AEF;
(Ⅲ)求證CE∥平面PAB.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】[選修4-5:不等式選講]
已知函數(shù)f(x)=|x+1|﹣|x﹣2|.
(1)求不等式f(x)≥1的解集;
(2)若不等式f(x)≥x2﹣x+m的解集非空,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知過點A(0,2)的直線與橢圓C:交于P,Q兩點.
(1)若直線的斜率為k,求k的取值范圍;
(2)若以PQ為直徑的圓經(jīng)過點E(1,0),求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com