函數(shù)f(x)滿足f(-1)=
1
4
,對任意x,y∈R有4f(
x+y
2
)f(
x-y
2
)=f(x)+f(y)
,則f(-2012)
-
1
4
-
1
4
分析:可采用賦值法求得f(0)=
1
2
,再通過賦值法求得f(-2)=f(-4)=f(-6)=-
1
4
,從而歸納出結(jié)論.
解答:解:∵f(-1)=
1
4
,令x=y=-1,有4f(-1)f(0)=2f(-1)=
1
2
,
∴f(0)=
1
2
,
令y=-x,有4f(0)f(x)=f(x)+f(-x),即2f(x)=f(x)+f(-x),
∴f(-x)=f(x),即f(x)為偶函數(shù);
令x=-2,y=0,有4[f(-1)]2=f(-2)+f(0),解得f(-2)=-
1
4
①;
令x=-4,y=0,有4[f(-2)]2=f(-4)+f(0),解得f(-4)=-
1
4
②;
再令x=4,y=2,有4f(3)f(1)=f(4)+f(2),解得f(3)=
1
4
;
令x=-6,y=0,有4[f(-3)]2=f(-6)+f(0),解得f(-6)=-
1
4
③;

∴f(-2n)=-
1
4

∴f(-2012)=-
1
4
點評:本題考查抽象函數(shù)及其用,關(guān)鍵在于通過賦值法尋找規(guī)律,難點在于多次賦值才能發(fā)現(xiàn)規(guī)律,屬于難題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•菏澤二模)已知定義在R上的奇函數(shù)f(x)滿足f(x+2e)=-f(x)(其中e=2.7182…),且在區(qū)間[e,2e]上是減函數(shù).令a=
ln2
2
,
ln3
3
,c=
ln5
5
,則(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖北省荊州中學(xué)高三(上)第一次質(zhì)量檢測數(shù)學(xué)試卷 (理科)(解析版) 題型:選擇題

已知定義域為R的函數(shù)f(x)滿足f(-x)=-f(x+4),則x>2時,f(x)單調(diào)遞增,若x1+x2<4,且(x1-2)(x2-2)<0,則f(x1)+f(x2)與0的大小關(guān)系是( )
A.f(x1)+f(x2)>0
B.f(x1)+f(x2)=0
C.f(x1)+f(x2)<0
D.f(x1)+f(x2)≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖南省湘西州邊城高級中學(xué)高三(上)月考數(shù)學(xué)試卷(解析版) 題型:選擇題

已知定義域為R的函數(shù)f(x)滿足f(-x)=-f(x+4),則x>2時,f(x)單調(diào)遞增,若x1+x2<4,且(x1-2)(x2-2)<0,則f(x1)+f(x2)與0的大小關(guān)系是( )
A.f(x1)+f(x2)>0
B.f(x1)+f(x2)=0
C.f(x1)+f(x2)<0
D.f(x1)+f(x2)≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年湖南省湘西州古丈縣補習(xí)學(xué)校高三(上)第一次月考數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

已知定義域為R的函數(shù)f(x)滿足f(-x)=-f(x+4),則x>2時,f(x)單調(diào)遞增,若x1+x2<4,且(x1-2)(x2-2)<0,則f(x1)+f(x2)與0的大小關(guān)系是( )
A.f(x1)+f(x2)>0
B.f(x1)+f(x2)=0
C.f(x1)+f(x2)<0
D.f(x1)+f(x2)≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年山東省菏澤市高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:選擇題

已知定義在R上的奇函數(shù)f(x)滿足f(x+2e)=-f(x)(其中e=2.7182…),且在區(qū)間[e,2e]上是減函數(shù).令a=,,c=,則( )
A.f(a)<f(b)<f(c)
B.f(b)<f(c)<f(a)
C.f(c)<f(a)<f(b)
D.f(c)<f(b)<f(a)

查看答案和解析>>

同步練習(xí)冊答案