【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓 的左焦點(diǎn)為,右頂點(diǎn)為,上頂點(diǎn)為

1)已知橢圓的離心率為,線段中點(diǎn)的橫坐標(biāo)為,求橢圓的標(biāo)準(zhǔn)方程;

2)已知△外接圓的圓心在直線上,求橢圓的離心率的值.

【答案】(1)(2)

【解析】

(1)利用橢圓的離心率以及已知條件轉(zhuǎn)化求解a,b即可得到橢圓方程.

(2)Aa,0),F(﹣c,0),求出線段AF的中垂線方程為:.推出,求出線段AB的中垂線方程,推出bc,然后求解橢圓的離心率即可.

1)因?yàn)闄E圓 的離心率為

所以,則

因?yàn)榫段中點(diǎn)的橫坐標(biāo)為,

所以

所以,則,

所以橢圓的標(biāo)準(zhǔn)方程為

2)因?yàn)?/span>

所以線段的中垂線方程為:

又因?yàn)椤?/span>外接圓的圓心C在直線上,

所以.因?yàn)?/span>,

所以線段的中垂線方程為:

C在線段的中垂線上,得

整理得,,

因?yàn)?/span>,所以

所以橢圓的離心率

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),等腰梯形,,,,分別是的兩個(gè)三等分點(diǎn),若把等腰梯形沿虛線折起,使得點(diǎn)和點(diǎn)重合,記為點(diǎn), 如圖(2).

1)求證:平面平面;

2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)P是橢圓上一點(diǎn),MN分別是兩圓(x+4)2y2=1(x-4)2y2=1上的點(diǎn),則|PM|+|PN|的最小值、最大值分別為 ( )

A. 9,12 B. 8,11 C. 10,12 D. 8,12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體中,底面為矩形,側(cè)面為梯形,,.

1)求證:;

2)求證:平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為.數(shù)列滿足,.

1)若,且,求正整數(shù)的值;

2)若數(shù)列,均是等差數(shù)列,求的取值范圍;

3)若數(shù)列是等比數(shù)列,公比為,且,是否存在正整數(shù),使,,成等差數(shù)列,若存在,求出一個(gè)的值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市政府為了節(jié)約生活用電,計(jì)劃在本市試行居民生活用電定額管理,即確定一戶居民月用電量標(biāo)準(zhǔn)a,用電量不超過a的部分按平價(jià)收費(fèi),超出a的部分按議價(jià)收費(fèi)為此,政府調(diào)查了100戶居民的月平均用電量單位:度,以,,,,分組的頻率分布直方圖如圖所示.

根據(jù)頻率分布直方圖的數(shù)據(jù),求直方圖中x的值并估計(jì)該市每戶居民月平均用電量的值;

用頻率估計(jì)概率,利用的結(jié)果,假設(shè)該市每戶居民月平均用電量X服從正態(tài)分布

估計(jì)該市居民月平均用電量介于度之間的概率;

利用的結(jié)論,從該市所有居民中隨機(jī)抽取3戶,記月平均用電量介于度之間的戶數(shù)為,求的分布列及數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】1)已知兩個(gè)變量線性相關(guān),若它們的相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值越接近于1.

2)線性回歸直線必過點(diǎn);

3)對(duì)于分類變量AB的隨機(jī)變量,越大說明AB有關(guān)系的可信度越大.

4)在刻畫回歸模型的擬合效果時(shí),殘差平方和越小,相關(guān)指數(shù)的值越大,說明擬合的效果越好.

5)根據(jù)最小二乘法由一組樣本點(diǎn),求得的回歸方程是,對(duì)所有的解釋變量,的值一定與有誤差.

以上命題正確的序號(hào)為____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在底面是菱形的四棱錐中,,,,點(diǎn)上,且

1)證明:;

2)在棱上是否存在一點(diǎn),使三棱錐是正三棱錐?證明你的結(jié)論.

3)求以為棱,為面的二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)若函數(shù)時(shí)取得極值,求實(shí)數(shù)的值;

(Ⅱ)當(dāng)時(shí),求零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案