若函數(shù)f(x)為奇函數(shù),且在(0,+∞)內(nèi)是增函數(shù),又f(2)=0,則數(shù)學(xué)公式<0的解集為


  1. A.
    (-2,0)∪(0,2)
  2. B.
    (-∞,-2)∪(0,2)
  3. C.
    (-∞,-2)∪(2,+∞)
  4. D.
    (-2,0)∪(2,+∞)
A
分析:根據(jù)函數(shù)f(x)為奇函數(shù),且在(0,+∞)內(nèi)是增函數(shù),又f(2)=0,判斷函數(shù)f(x)在R上的符號,根據(jù)奇函數(shù)把<0轉(zhuǎn)化為<0,根據(jù)積商符號法則及函數(shù)的單調(diào)性即可求得<0的解集.
解答:因為函數(shù)f(x)為奇函數(shù),且在(0,+∞)內(nèi)是增函數(shù),f(2)=0,
所以x>2或-2<x<0時,f(x)>0;x<-2或0<x<2時,f(x)<0;
<0,即<0,
可知-2<x<0或0<x<2.
故選A.
點評:考查函數(shù)的單調(diào)性和奇偶性,以及根據(jù)積商符號法則轉(zhuǎn)化不等式,根據(jù)函數(shù)的單調(diào)性把函數(shù)值不等式轉(zhuǎn)化為自變量不等式,體現(xiàn)了數(shù)形結(jié)合和轉(zhuǎn)化的思想,屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義在D上的函數(shù)f(x),如果滿足:對任意x∈D,存在常數(shù)M≥0,都有|f(x)|≤M 成立,則稱f(x)是D上的有界函數(shù),其中M稱為函f(x)的一個上界.
已知函數(shù)f(x)=1+a(
1
2
)
x
+(
1
4
)
x
,g(x)=log
1
2
1-ax
x-1

(1)若函數(shù)g(x)為奇函數(shù),求實數(shù)a的值;
(2)在(1)的條件下,求函數(shù)g(x),在區(qū)間[
5
3
,3]上的所有上界構(gòu)成的集合;
(3)若函數(shù)g(x)在[0,+∞)上是以3為上界的有界函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案