我市某公司為激勵工人進行技術(shù)革新,既保質(zhì)量又提高產(chǎn)值,對小組生產(chǎn)產(chǎn)值超產(chǎn)部分進行獎勵.設(shè)年底時超產(chǎn)產(chǎn)值為x(x>0)萬元,當x不超過35萬元時,獎金為log6(x+1)萬元;當x超過35萬元時,獎金為5%•(x+5)萬元.
(1)若某小組年底超產(chǎn)產(chǎn)值為95萬元,則其超產(chǎn)獎金為多少?
(2)寫出獎金y(單位:萬元)關(guān)于超產(chǎn)產(chǎn)值x的函數(shù)關(guān)系式;
(3)某小組想爭取年超產(chǎn)獎金y∈[1,8](單位:萬元),則超產(chǎn)產(chǎn)值x應(yīng)在什么范圍?
解:(1)當x=95時,5%•(x+5)=5萬元;(2)
;(3)1≤log
6(x+1)≤8,解得5≤x≤47,又x≤35,所以5≤x≤35;由1≤0.05(x+5)≤8,解得15≤x≤155,又x>35,所以35<x≤155,綜上知,超產(chǎn)產(chǎn)值的范圍是5≤x≤155.
分析:(1)由于年底超產(chǎn)產(chǎn)值為95萬元,故選用函數(shù)5%•(x+5)求獎金;(2)易分段函數(shù)的形式表示獎金y(單位:萬元)關(guān)于超產(chǎn)產(chǎn)值x的函數(shù)關(guān)系式;(3)利用分段函數(shù)的解析式可求.
點評:本題是已知函數(shù)的解析式,求解函數(shù)值及參數(shù)的范圍問題,關(guān)鍵是對分段函數(shù)的理解與應(yīng)用.