已知:對于數(shù)列{an},定義{△an}為數(shù)列{an}的一階差分?jǐn)?shù)列,其中△an=an+1-an,
(1)若數(shù)列{an}的通項(xiàng)公式an=
5
2
n2-
3
2
n
(n∈N*),求:數(shù)列{△an}的通項(xiàng)公式;
(2)若數(shù)列{an}的首項(xiàng)是1,且滿足△an-an=2n,
①設(shè)bn=
an
2n
,求證:數(shù)列{bn}是等差數(shù)列,并求數(shù)列{bn}的通項(xiàng)公式;
②求:數(shù)列{an}的通項(xiàng)公式及前n項(xiàng)和Sn
(1)依題意△an=an+1-an,
∴△an=[
5
2
(n+1)2-
3
2
(n+1)]-[
5
2
n2-
3
2
n]=5n+1
(2)①由△an-an=2n?an+1-an-an=2n?an+1=2an+2n
bn=
an
2n
,
∴bn+1-bn=
an+1
2n+1
-
an
2n
=
an+1-2an
2n+1
=
2n
2n+1
=
1
2
,且b1=
a1
2
=
1
2

故{bn}是首項(xiàng)為
1
2
,公差為
1
2
的等差數(shù)列
∴bn=
n
2

②∵bn=
an
2n

∴an=
n
2
2n
=n•2n-1
∴sn=1•20+2×21+3×22+…+n•2n-1(1)   
2sn=1•21+2•22+…+n•2n(2)
(1)-(2)得-sn=1+2+22+…+2n-1-n•2n
=
1-2n
1-2
-n•2n
∴sn=n•2n-2n+1
=(n-1)2n+1.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知:對于數(shù)列{an},定義{△an}為數(shù)列{an}的一階差分?jǐn)?shù)列,其中△an=an+1-an,
(1)若數(shù)列{an}的通項(xiàng)公式an=
5
2
n2-
3
2
n
(n∈N*),求:數(shù)列{△an}的通項(xiàng)公式;
(2)若數(shù)列{an}的首項(xiàng)是1,且滿足△an-an=2n,
①設(shè)bn=
an
2n
,求證:數(shù)列{bn}是等差數(shù)列,并求數(shù)列{bn}的通項(xiàng)公式;
②求:數(shù)列{an}的通項(xiàng)公式及前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正整數(shù)數(shù)列{an}中,a1=3,且對于任意大于1的整數(shù)n,點(diǎn)(
an
an-1
)
總在直線x-y-
3
=0
上,則
lim
n→+∞
an
(n+1)2
=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知:對于數(shù)列{an},定義{△an}為數(shù)列{an}的一階差分?jǐn)?shù)列,其中△an=an+1-an,
(1)若數(shù)列{an}的通項(xiàng)公式數(shù)學(xué)公式(n∈N*),求:數(shù)列{△an}的通項(xiàng)公式;
(2)若數(shù)列{an}的首項(xiàng)是1,且滿足△an-an=2n,
①設(shè)數(shù)學(xué)公式,求證:數(shù)列{bn}是等差數(shù)列,并求數(shù)列{bn}的通項(xiàng)公式;
②求:數(shù)列{an}的通項(xiàng)公式及前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年北京四中高三(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知:對于數(shù)列{an},定義{△an}為數(shù)列{an}的一階差分?jǐn)?shù)列,其中△an=an+1-an
(1)若數(shù)列{an}的通項(xiàng)公式(n∈N*),求:數(shù)列{△an}的通項(xiàng)公式;
(2)若數(shù)列{an}的首項(xiàng)是1,且滿足△an-an=2n
①設(shè),求證:數(shù)列{bn}是等差數(shù)列,并求數(shù)列{bn}的通項(xiàng)公式;
②求:數(shù)列{an}的通項(xiàng)公式及前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊答案