【題目】(本小題滿分12分)
某商場準(zhǔn)備在國慶節(jié)期間舉行促銷活動,根據(jù)市場調(diào)查,該商場決定從種服裝商品,種家電商品,種日用商品中,選出種商品進行促銷活動.
(Ⅰ)試求選出的種商品中至多有一種是家電商品的概率;
(Ⅱ)商場對選出的某商品采用的促銷方案是有獎銷售,即在該商品現(xiàn)價的基礎(chǔ)上將價格提高元,同時,若顧客購買該商品,則允許有次抽獎的機會,若中獎,則每次中獎都獲得數(shù)額為元的獎券.假設(shè)顧客每次抽獎時獲獎的概率都是,若使促銷方案對商場有利,則最少為多少元?
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在多面體ABCDPE中,四邊形ABCD是直角梯形,,,平面平面,,,,,的余弦值為,,F為BE中點,G為PD中點.
(1)求證:平面ABCD;
(2)求平面BCE與平面ADE所成角(銳角)的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線C:,O為坐標(biāo)原點,F為C的右焦點,過F的直線與C的兩條漸近線的交點分別為M、N.若OMN為直角三角形,則|MN|=
A. B. 3 C. D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的最小正周期為4,其圖象關(guān)于直線對稱,給出下面四個結(jié)論:
①函數(shù)在區(qū)間上先增后減;②將函數(shù)的圖象向右平移個單位后得到的圖象關(guān)于原點對稱;③點是函數(shù)圖象的一個對稱中心;④函數(shù)在上的最大值為1.其中正確的是( )
A. ①② B. ③④ C. ①③ D. ②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】3月12日,全國政協(xié)總工會界別小組會議上,人社部副部長湯濤在回應(yīng)委員呼聲時表示無論是從養(yǎng)老金方面,還是從人力資源的合理配置來說,延遲退休是大勢所趨.不過,湯部長也表示,不少職工對于延遲退休有著不同的意見.某高校一社團就是否同意延遲退休的情況隨機采訪了200名市民,并進行了統(tǒng)計,得到如下的列聯(lián)表:
贊同延遲退休 | 不贊同延遲退休 | 合計 | |
男性 | 80 | 20 | 100 |
女性 | 60 | 40 | 100 |
合計 | 140 | 60 | 200 |
(1)根據(jù)上面的列聯(lián)表判斷能否有的把握認為對延遲退休的態(tài)度與性別有關(guān);
(2)為了進一步征求對延遲退休的意見和建議,從抽取的200位市民中對不贊同的按照分層抽樣的方法抽取6人,再從這6人中隨機抽出3名進行電話回訪,求3人中至少有1人為男性的概率.
附: ,其中.
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市美團外賣配送員底薪是每月1800元,設(shè)每月配送單數(shù)為X,若,每單提成3元,若,每單提成4元,若,每單提成4.5元,餓了么外賣配送員底薪是每月2100元,設(shè)每月配送單數(shù)為Y,若,每單提成3元,若,每單提成4元,小想在美團外賣和餓了么外賣之間選擇一份配送員工作,他隨機調(diào)查了美團外賣配送員甲和餓了么外賣配送員乙在2019年4月份(30天)的送餐量數(shù)據(jù),如下表:
表1:美團外賣配送員甲送餐量統(tǒng)計
日送餐量x(單) | 13 | 14 | 16 | 17 | 18 | 20 |
天數(shù) | 2 | 6 | 12 | 6 | 2 | 2 |
表2:餓了么外賣配送員乙送餐量統(tǒng)計
日送餐量x(單) | 11 | 13 | 14 | 15 | 16 | 18 |
天數(shù) | 4 | 5 | 12 | 3 | 5 | 1 |
(1)設(shè)美團外賣配送員月工資為,餓了么外賣配送員月工資為,當(dāng)時,比較 與的大小關(guān)系
(2)將4月份的日送餐量的頻率視為日送餐量的概率
(。┯嬎阃赓u配送員甲和乙每日送餐量的數(shù)學(xué)期望E(X)和E(Y)
(ⅱ)請利用所學(xué)的統(tǒng)計學(xué)知識為小王作出選擇,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線E:過點,過拋物線E上一點作兩直線PM,PN與圓C:相切,且分別交拋物線E于M、N兩點.
(1)求拋物線E的方程,并求其焦點坐標(biāo)和準(zhǔn)線方程;
(2)若直線MN的斜率為,求點P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(m為參數(shù)),以坐標(biāo)點O為極點,x軸的非負半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρcos(θ+)=1.
(1)求直線l的直角坐標(biāo)方程和曲線C的普通方程;
(2)已知點M (2,0),若直線l與曲線C相交于P、Q兩點,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com