已知O是銳角三角形△ABC的外接圓的圓心,且∠A=θ,若數(shù)學公式,則m=


  1. A.
    sinθ
  2. B.
    cosθ
  3. C.
    tanθ
  4. D.
    不能確定
A
分析:設(shè)外接圓半徑為R,把已知條件化為:=,左右分別與作數(shù)量積,化簡可得 sin(B+C)=m,再利用誘導公式可得m=sinA=sinθ,從而得出結(jié)論.
解答:設(shè)外接圓半徑為R,則:= 可化為:
= (*).
易知的夾角為2∠C,的夾角為2∠B,的夾角為0,
||=||=||=R.
則對(*)式左右分別與作數(shù)量積,可得:
-+-=-2m
R2 (cos2C-1)+•R2(cos2B-1)=-2mR2
∴-2sinCcosB+(-2sinBcosC)=-2m,∴sinCcosB+sinBcosC=m,即 sin(B+C)=m.
因為sinA=sin[π-(B+C)]=sin(B+C)且∠A=θ,
所以,m=sinA=sinθ,
故選A.
點評:本題主要考查兩個向量的數(shù)量積的運算,兩角和差的正弦公式,二倍角公式的應(yīng)用,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知O是銳角三角形△ABC的外接圓的圓心,且∠A=θ,若
cosB
sinC
AB
+
cosC
sinB
AC
=2m
AO
,則m=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知O是銳角三角形ABC的外接圓的圓心,角A,B,C的對邊分別為a,b,c,且A=
π
4
,若
cosB
sinC
AB
+
cosC
sinB
AC
=2m
AO
,則m,的值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知O是銳角三角形ABC的外心,△BOC,△COA,△AOB的面積數(shù)依次成等差數(shù)列.
(1)推算tanAtanC是否為定值?說明理由;
(2)求證:tanA,tanB,tanC也成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知O是銳角三角形△ABC的外接圓的圓心,且∠A=θ,若
cosB
sinC
AB
+
cosC
sinB
AC
=2m
AO
,則m=( 。
A.sinθB.cosθC.tanθD.不能確定

查看答案和解析>>

科目:高中數(shù)學 來源:2011年上海市黃浦區(qū)大同中學高考數(shù)學專項訓練:三角函數(shù)(解析版) 題型:解答題

已知O是銳角三角形ABC的外心,△BOC,△COA,△AOB的面積數(shù)依次成等差數(shù)列.
(1)推算tanAtanC是否為定值?說明理由;
(2)求證:tanA,tanB,tanC也成等差數(shù)列.

查看答案和解析>>

同步練習冊答案