A. | lg(x2+$\frac{1}{4}$)>lgx(x>0) | B. | sin x+$\frac{1}{sinx}$≥2(x≠$\frac{kπ}{2}$,k∈Z) | ||
C. | x2+1≥2|x|(x∈R) | D. | $\frac{1}{{x}^{2}+1}$>1(x∈R) |
分析 利用基本不等式的性質(zhì)依次判斷各選項(xiàng)即可得出.
解答 解:對于A:lg(x2+$\frac{1}{4}$)>lgx(x>0)等價(jià)于${x}^{2}+\frac{1}{4}>x$,即$(x-\frac{1}{2})^{2}>0$,故得x$≠\frac{1}{2}$,而題設(shè)x>0,當(dāng)x=$\frac{1}{2}$時不成立.
對于B:sin x+$\frac{1}{sinx}$≥2(x≠$\frac{kπ}{2}$,k∈Z)當(dāng)且僅當(dāng)sin2=1時取等號.此時x=$\frac{kπ}{2}$,與題設(shè)x≠$\frac{kπ}{2}$,k∈Z矛盾,∴不成立.
對于C:x2+1≥2|x|(x∈R)等價(jià)于$|x|+\frac{1}{|x|}≥2$,當(dāng)且僅當(dāng)x=±1取等號.∴成立.
對于D:$\frac{1}{{x}^{2}+1}$>1(x∈R)等價(jià)于x2+1<1,即x2<0,無解,∴不成立.
故選:C.
點(diǎn)評 本題考查了基本不等式的性質(zhì),考查了靈活解決問題的能力,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $-\frac{{\sqrt{3}}}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $-\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com