本小題滿分13分)已知圓,定點(diǎn)A(2,0),M為圓C上一動(dòng)點(diǎn),點(diǎn)P在AM上,點(diǎn)N在C、M上(C為圓心),且滿足,設(shè)點(diǎn)N的軌跡為曲線E.
(1)求曲線E的方程;
(2)過(guò)點(diǎn)B(m,0)作傾斜角為的直線交曲線E于C、D兩點(diǎn).若點(diǎn)Q(1,0)恰在以線段CD為直徑的圓的內(nèi)部,求實(shí)數(shù)m的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題滿分13分)
已知函數(shù)f (x) = 2cos2x-2sinxcosx + 1.
(1)設(shè)方程f (x) – 1 = 0在(0,)內(nèi)的兩個(gè)零點(diǎn)x1,x2,求x1 + x2的值;
(2)把函數(shù)y = f (x)的圖象向左平移m (m>0)個(gè)單位使所得函數(shù)的圖象關(guān)于點(diǎn)(0,2)對(duì)稱,求m的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011屆江西省贛縣中學(xué)高三適應(yīng)性考試文科數(shù)學(xué) 題型:解答題
(本小題滿分13分) 已知函數(shù),且對(duì)于任意實(shí)數(shù),恒有.
(1)求函數(shù)的解析式;
(2)已知函數(shù)在區(qū)間上單調(diào),求實(shí)數(shù)的取值范圍;
(3)若函數(shù)有2個(gè)零點(diǎn)?求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年湖南省長(zhǎng)沙市高三第四次月考文科數(shù)學(xué)試卷 題型:解答題
(本小題滿分13分)已知函數(shù)().
(1)若函數(shù)有三個(gè)零點(diǎn)分別為,且,,求函數(shù)的單調(diào)區(qū)間;
(2)若,,證明:函數(shù)在區(qū)間(0,2)內(nèi)一定有極值點(diǎn);
(3)在(2)的條件下,若函數(shù)的兩個(gè)極值點(diǎn)之間的距離不小于,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年北京四中高三上學(xué)期期中考試數(shù)學(xué)文卷 題型:解答題
(本小題滿分13分)已知:若是公差不為0的等差數(shù)列的前項(xiàng)和,且、、成等比數(shù)列! 。1)求:數(shù)列、、的公比; 。2)若,求:數(shù)列的通項(xiàng)公式。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年北京市石景山區(qū)高三統(tǒng)一考試數(shù)學(xué)理卷 題型:解答題
(本小題滿分13分)
已知橢圓經(jīng)過(guò)點(diǎn),離心率為,動(dòng)點(diǎn)
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)求以O(shè)M為直徑且被直線截得的弦長(zhǎng)為2的圓的方程;
(Ⅲ)設(shè)F是橢圓的右焦點(diǎn),過(guò)點(diǎn)F作OM的垂線與以O(shè)M為直徑的圓交于點(diǎn)N,證明線段ON的長(zhǎng)為定值,并求出這個(gè)定值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com