關于x的方程4x-k•2x+k+3=0,只有一個實數(shù)解,則實數(shù)k的取值范圍是
(-∞,-3)∪{6}
(-∞,-3)∪{6}
分析:首先換元,令t=2x,則關于t方程 t2-kt+k+3=0只有一個正根,根據根與系數(shù)的關系寫出一元二次方程要滿足的條件,得到結果.
解答:解:設t=2x,t>0
x的方程4x-k•2x+k+3=0轉化為t2-kt+k+3=0,設f(t)=t2-kt+k+3,
原方程只有一個根,則換元以后的方程有一個正根,
∴f(0)<0,或△=0,
∴k<-3,或k=6
故答案為(-∞,-3)∪{6}.
點評:本題考查一元二次方程根存在的條件,考查換元的數(shù)學思想,本題解題的關鍵是注意換元過程中變量范圍的改變.本題是一個中檔題目.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若關于x的方程4x-k•2x+k+3=0無實數(shù)解,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

若關于x的方程4x-k•2x+k+3=0無實數(shù)解,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

關于x的方程4x-k•2x+k+3=0,只有一個實數(shù)解,則實數(shù)k的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

若關于x的方程4x-k•2x+k+3=0無實數(shù)解,求k的取值范圍.

查看答案和解析>>

同步練習冊答案