如圖,已知圓C與y軸相切于點T(0,2),與x軸正半軸相交于兩點M,N (點M在點N的右側),且。橢圓D:的焦距等于,且過點
( I ) 求圓C和橢圓D的方程;
(Ⅱ) 若過點M的動直線與橢圓D交于A、B兩點,若點N在以弦AB為直徑的圓的外部,求直線斜率的范圍。
(1),
(2)
【解析】
試題分析:)解:(1)設圓半徑為r, 由條件知圓心C(r,2)
∵圓在x軸截得弦長MN=3
∴ ∴r=
∴圓C的方程為: (3分)
上面方程中令y=0,得 解得x=1或x="4," ∵點M在點N的右側
∴M(4,0),N(1,0)
∵橢圓焦距2c=2=2 ∴c=1 ∴橢圓方程可化為:
又橢圓過點( 代入橢圓方程得:
解得或(舍) ∴橢圓方程為: (6分)
(2)設直線l的方程為:y="k(x-4)" 代入橢圓方程化簡得:
(
△=32>0 <
設A(x1,y1),B(x2,y2) 則x1+x2= x1x2= (7分)
∵點N在以弦AB為直徑的圓的外部,>0
∴(>0
即:>0
-(+>0
化簡得:> ∴<< ∴k∈
考點:圓與橢圓
點評:主要是考查了圓的方程,以及橢圓性質的運用,并聯(lián)立方程組設而不求的數(shù)學思想的運用,屬于中檔題。
科目:高中數(shù)學 來源: 題型:
x2 |
a2 |
y2 |
b2 |
2 |
| ||
2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
x2 |
a2 |
y2 |
b2 |
2 |
| ||
2 |
查看答案和解析>>
科目:高中數(shù)學 來源:2013屆山東省濰坊市高三3月第一次模擬考試文科數(shù)學試卷(帶解析) 題型:解答題
(本小題滿分12分)
如圖,已知圓C與y軸相切于點T(0,2),與x軸正半軸相交于兩點M,N(點M必在點N的右側),且已知橢圓D:的焦距等于,且過點
( I ) 求圓C和橢圓D的方程;
(Ⅱ) 若過點M斜率不為零的直線與橢圓D交于A、B兩點,求證:直線NA與直線NB的傾角互補.
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年山東省濰坊市高三3月第一次模擬考試文科數(shù)學試卷(解析版) 題型:解答題
(本小題滿分12分)
如圖,已知圓C與y軸相切于點T(0,2),與x軸正半軸相交于兩點M,N(點M必在點N的右側),且已知橢圓D:的焦距等于,且過點
( I ) 求圓C和橢圓D的方程;
(Ⅱ) 若過點M斜率不為零的直線與橢圓D交于A、B兩點,求證:直線NA與直線NB的傾角互補.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com