已知f(x)=sin(2x+φ)+
3
cos(2x+φ)為奇函數(shù),且在[0,
π
4
]上為減函數(shù),則φ的一個值為( 。
A、
π
3
B、
4
3
π
C、
5
3
π
D、
3
分析:先將函數(shù)化簡為y=Asin(ωx+φ)的形式,再根據(jù)三角函數(shù)的奇偶性和單調(diào)性對選項進(jìn)行逐一驗證即可得到答案.
解答:解:f(x)=2sin(2x+φ+
π
3
),要使f(x)是奇函數(shù),必須φ+
π
3
=kπ(k∈Z),因此應(yīng)排除A、B.
當(dāng)φ=
3
時f(x)=2sin2x在[0,
π
4
]上為增函數(shù),故C不對.
當(dāng)φ=
3
時,f(x)=-2sin2x在[0,
π
4
]上為減函數(shù).
故選D.
點(diǎn)評:本題主要考查三角函數(shù)的單調(diào)性和奇偶性.一般都要先將函數(shù)解析式化簡為y=Asin(ωx+φ)的形式,再根據(jù)題中條件解題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=sin(x+
π
2
),g(x)=cos(x-
π
2
),則f(x)的圖象( 。
A、與g(x)的圖象相同
B、與g(x)的圖象關(guān)于y軸對稱
C、向左平移
π
2
個單位,得到g(x)的圖象
D、向右平移
π
2
個單位,得到g(x)的圖象

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
sinπx   (x<0)
f(x-1)-1 (x>0)
,則f(-
11
6
)+f(
11
6
)=
-2
-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=sin(ωx+
π
3
)(ω>0)的圖象與y=-1的圖象的相鄰兩交點(diǎn)間的距離為π,要得到y(tǒng)=f(x)的圖象,只需把y=cos2x的圖象(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=sin(x+
π
2
),g(x)=cos(x-
π
2
),則f(x)的圖象( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=sinπx.
(1)設(shè)g(x)=
f(x),(x≥0)
g(x+1)+1,(x<0)
,求g(
1
4
)
g(-
1
3
)

(2)設(shè)h(x)=f2(x)+
3
f(x)cosπx+1
,求h(x)的最大值及此時x值的集合.

查看答案和解析>>

同步練習(xí)冊答案