【題目】已知函數(shù)f(x)=Acos(ωx+α)(A>0,ω>0,0<α<π)為奇函數(shù),該函數(shù)的部分圖象如圖所示,△EFG是邊長為2的等邊三角形,則f(1)的值為

【答案】-
【解析】解:∵f(x)=Acos(ωx+φ)為奇函數(shù),∴f(0)=Acosφ=0.
∵0<φ<π,∴φ= ,∴f(x)=Acos(ωx+ )=﹣Asinωx,
∵△EFG是邊長為2的等邊三角形,則yE= =A,
又∵函數(shù)的周期 T=2FG=4,根據(jù)周期公式可得,ω= = ,
∴f(x)=﹣Asin x=﹣ sin x,則f(1)=﹣
所以答案是:﹣
【考點精析】本題主要考查了函數(shù)的值的相關知識點,需要掌握函數(shù)值的求法:①配方法(二次或四次);②“判別式法”;③反函數(shù)法;④換元法;⑤不等式法;⑥函數(shù)的單調性法才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知向量 =(cosα,sinα)(0≤α<2π), =(﹣ , ).
(1)若 ,求α的值;
(2)若兩個向量 + 垂直,求tanα.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正三棱柱中,點 分別是棱, 上的點,且

(Ⅰ)證明:平面平面;

(Ⅱ)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=(x﹣1)2+a(lnx﹣x+1)(其中a∈R,且a為常數(shù))
(1)若對于任意的x∈(1,+∞),都有f(x)>0成立,求a的取值范圍;
(2)在(1)的條件下,若方程f(x)+a+1=0在x∈(0,2]上有且只有一個實根,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線在直角坐標系中的參數(shù)方程為為參數(shù), 為傾斜角),以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,在極坐標系中,曲線的方程為.

(1)寫出曲線的直角坐標方程;

(2)點,若直線與曲線交于兩點,求使為定值的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)= sinxcsox+cos2x+m
(1)求函數(shù)f(x)的最小正周期和單調遞增區(qū)間;
(2)當x∈[﹣ , ]時,函數(shù)f(x)的最小值為2,求函數(shù)f(x)的最大值及對應的x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知三角形的三邊構成等比數(shù)列,且它們的公比為q,則q的取值范圍是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合M={(x,y)||x|≤2,|y|≤1},在集合M內隨機取出一個元素(x,y).
(1)求以(x,y)為坐標的點落在圓x2+y2=1內的概率.
(2)若x,y都是整數(shù),求以(x,y)為坐標的點落在圓x2+y2=1內或該圓上的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓心在y軸上的圓C經(jīng)過點A(1,2)和點B(0,3).
(Ⅰ)求圓C的方程;
(Ⅱ)若直線l在兩坐標軸上的截距相等,且被圓C截得的弦長為 ,求l的方程.

查看答案和解析>>

同步練習冊答案