(2012•安徽模擬)在△ABC中,D是BC邊上任意一點(diǎn)(D與B,C不重合),且|AB|2=|AD|2+|BD|•|DC|,則△ABC一定是( 。
分析:過(guò)A作AO垂直于BC,以BC所在的直線為x軸,AO所在的直線為y軸建立平面直角坐標(biāo)系,設(shè)出A(0,a),B(b,0),C(c,0),d(d,0),利用兩點(diǎn)間的距離公式表示出|AB|,|AD|,|BD|,|DC|,代入已知的等式中,整理后根據(jù)D與B不重合得到d不等于b,在等式兩邊同時(shí)除以d-b,得到b+c=0,即b=-c,可得出B與C關(guān)于y軸對(duì)稱,可得出AB=AC,即三角形ABC為等腰三角形.
解答:解:根據(jù)題意畫出相應(yīng)的圖形,如圖所示:

過(guò)A作AO⊥BC,交BC于點(diǎn)O,以BC所在的直線為x軸,AO所在的直線為y軸建立平面直角坐標(biāo)系,
設(shè)A(0,a),B(b,0),C(c,0),D(d,0),
∵|AB|2=|AD|2+|BD|•|DC|,
∴a2+b2=a2+d2+(d-b)(c-d),即d2-b2+(d-b)(c-d)=0,
∴(d+b)(d-b)+(d-b)(c-d)=0,即(d-b)(b+c)=0,
∵D與B不重合,∴d≠b,即d-b≠0,
∴b+c=0,即b=-c,
∴B與C關(guān)于y軸對(duì)稱,
∴AB=AC,
則△ABC為等腰三角形.
故選C
點(diǎn)評(píng):此題考查了三角形的形狀判斷,涉及的知識(shí)有:兩點(diǎn)間的距離公式,對(duì)稱的性質(zhì),以及等腰三角形的判定,利用了數(shù)形結(jié)合的思想,解題的關(guān)鍵是根據(jù)題意建立適當(dāng)?shù)淖鴺?biāo)系,設(shè)出各點(diǎn)的坐標(biāo),然后利用解析式進(jìn)行判斷.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•安徽模擬)在復(fù)平面內(nèi),復(fù)數(shù)z=
1+i
i-2
對(duì)應(yīng)的點(diǎn)位于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•安徽模擬)定義在R上的奇函數(shù)f(x)滿足:x≤0時(shí)f(x)=ax+b(a>0且a≠1),f(1)=
1
2
,則f(2)=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•安徽模擬)(理)若變量x,y滿足約束條件
x+y-3≤0
x-y+1≥0
y≥1
,則z=|y-2x|的最大值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•安徽模擬)下列說(shuō)法不正確的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•安徽模擬)已知f(x)=2
3
sinx+
sin2x
sinx

(1)求f(x)的最大值,及當(dāng)取最大值時(shí)x的取值集合.
(2)在三角形ABC中,a,b,c分別是角A,B,C所對(duì)的邊,對(duì)定義域內(nèi)任意x,有f(x)≤f(A),若a=
3
,求
AB
AC
的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案