【題目】已知數(shù)列滿足,且,.
(Ⅰ)求證:數(shù)列是等比數(shù)列;
(Ⅱ)設是數(shù)列的前項和,若對任意的都成立,求實數(shù)的取值范圍.
【答案】(Ⅰ)見解析;(Ⅱ).
【解析】試題分析:
(1)利用題中的遞推關系計算可得后項與前項的比值為定值,計算首項為即可證得數(shù)列為等比數(shù)列;
(2)原問題轉化為對任意的都成立,分類討論可得:實數(shù)的取值范圍是.
試題解析:
(Ⅰ)因為,,,
所以,
所以,
又,
所以數(shù)列是首項為,公比為的等比數(shù)列.
(Ⅱ)由(Ⅰ)得,,即,
則
.
又 ,
要使對任意的都成立,
即(*)對任意的都成立.
①當為正奇數(shù)時,由(*)得,,
即,
因為,
所以對任意的正奇數(shù)都成立,
當且僅當時,有最小值1,
所以.
②當為正偶數(shù)時,由(*)得,
,
即,
因為,
所以對任意的正偶數(shù)都成立.
當且僅當時,有最小值,所以.
綜上所述,存在實數(shù),使得對任意的都成立,
故實數(shù)的取值范圍是.
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)生產(chǎn)甲乙兩種產(chǎn)品均需用A,B兩種原料,已知生產(chǎn)1噸每種產(chǎn)品需原料及每天原料的可用限額如右表所示,如果生產(chǎn)1噸甲、乙產(chǎn)品可獲利潤分別為3萬元、4萬元,則該企業(yè)每天可獲得最大利潤為( )
A.18萬元 B.17萬元 C.16萬元 D.12萬元
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知四棱錐P-ABCD,底面ABCD是邊長為2的蓌形,PA⊥平面ABCD,PA=2,∠ABC=60°,E,F分別是BC,PC的中點。
(1)求證:AE⊥PD;
(2)求二面角E-AF-C的余弦值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《算法統(tǒng)宗》是我國古代數(shù)學名著.在這部著作中,許多數(shù)學問題都是以歌訣形式呈現(xiàn)的,“竹筒容米”就是其中一首:家有八節(jié)竹一莖,為因盛米不均平;下頭三節(jié)三生九,上梢三節(jié)貯三升;唯有中間二節(jié)竹,要將米數(shù)次第盛;若是先生能算法,也教算得到天明!大意是:用一根8節(jié)長的竹子盛米,每節(jié)竹筒盛米的容積是不均勻的,下端3節(jié)可盛米3.9升,上端3節(jié)可盛米3升.要按依次盛米容積相差同一數(shù)量的方式盛米,中間兩節(jié)可盛米多少升?由以上條件,計算出這根八節(jié)竹筒的容積為( )
A. 升 B. 升 C. 升 D. 升
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓,直線:x=6,圓與軸相交于點(如圖),點P(-1,2)是圓內一點,點為圓上任一點(異于點),直線與相交于點.
(1)若過點P的直線與圓相交所得弦長等于,求直線的方程;
(2)設直線的斜率分別為,求證: 為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的中心在原點,焦點在軸上,離心率為,右焦點到右頂點的距離為.
(1)求橢圓的標準方程;
(2)是否存在與橢圓交于兩點的直線,使得成立?若存在,求出實數(shù)的取值范圍,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】未知數(shù)的個數(shù)多余方程個數(shù)的方程(組)叫做不定方程,最早提出不定方程的是我國的《九章算術》.實際生活中有很多不定方程的例子,例如“百雞問題”:公元五世紀末,我國古代數(shù)學家張丘建在《算經(jīng)》中提出了“百雞問題”:“雞母一,值錢三;雞翁一,值錢二;雞雛二,值錢一.百錢買百雞,問雞翁、母、雛各幾何?”
算法設計:
(1)設母雞、公雞、小雞數(shù)分別為、、,則應滿足如下條件:
;.
(2)先分析一下三個變量的可能值.①的最小值可能為零,若全部錢用來買母雞,最多只能買33只,
故的值為中的整數(shù).②的最小值為零,最大值為50.③的最小值為零,最大值為100.
(3)對、、三個未知數(shù)來說,取值范圍最少.為提高程序的效率,先考慮對的值進行一一列舉.
(4)在固定一個的值的前提下,再對值進行一一列舉.
(5)對于每個,,怎樣去尋找滿足百年買百雞條件的.由于,值已設定,便可由下式得到:.
(6)這時的,,是一組可能解,它只滿足“百雞”條件,還未滿足“百錢”.是否真實解,還要看它們是否滿足,滿足即為所求解.
根據(jù)上述算法思想,畫出流程圖并用偽代碼表示.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com