一廠家向用戶提供的一箱產(chǎn)品共10件,其中有2件次品,用戶先對產(chǎn)品進行抽檢以決定是否接收.抽檢規(guī)則是這樣的:一次取一件產(chǎn)品檢查(取出的產(chǎn)品不放回箱子),若前三次沒有抽查到次品,則用戶接收這箱產(chǎn)品;若前三次中一抽查到次品就立即停止抽檢,并且用戶拒絕接收這箱產(chǎn)品.
(1)求這箱產(chǎn)品被用戶接收的概率;
(2)記抽檢的產(chǎn)品件數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望.

解:(1)設(shè)“這箱產(chǎn)品被用戶接收”為事件A,
即這箱產(chǎn)品被用戶接收的概率為
(2)ξ的可能取值為1,2,3.
P(ξ=1)=,P(ξ=2)=×=,P(ξ=3)=,
∴ξ的概率分布列為:
ξ123
P
∴Eξ=
分析:由題設(shè)每次抽取到什么產(chǎn)品是獨立的,可用 乘法公式求解,
(1)這箱產(chǎn)品被用戶接收,即前三次沒有抽取到次品,根據(jù)乘法公式求出概率;
(2)由題意抽檢的產(chǎn)品件數(shù)為ξ的值為0,1,2,3,故計算出P(ξ=i)(i=1,2,3)的概率,列出分布列,由公式求出數(shù)學(xué)期望即可.
點評:本題考查離散型隨機變量及其分布列,考查作出分布列的方法以及根據(jù)分布列求出變量的期望的能力,解答本題的關(guān)鍵是分清事件的結(jié)構(gòu).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一廠家向用戶提供的一箱產(chǎn)品共10件,其中有2件次品,用戶先對產(chǎn)品進行抽檢以決定是否接收.抽檢規(guī)則是這樣的:一次取一件產(chǎn)品檢查,若前三次沒有抽查到次品,則用戶接收這箱產(chǎn)品,而前三次中只要抽查到次品就停止抽檢,并且用戶拒絕接收這箱產(chǎn)品.
(Ⅰ)求這箱產(chǎn)品被用戶拒絕接收的概率;
(Ⅱ)記x表示抽檢的產(chǎn)品件數(shù),求x的概率分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•黃浦區(qū)二模)一廠家向用戶提供的一箱產(chǎn)品共10件,其中有2件次品.用戶隨機抽取3件產(chǎn)品進行檢驗,若這3件產(chǎn)品中至少有一件次品,就拒收這箱產(chǎn)品;若這3件產(chǎn)品中沒有次品,就接收這箱產(chǎn)品.那么這箱產(chǎn)品被用戶拒收的概率是
8
15
8
15
.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年西工大附中理)一廠家向用戶提供的一箱產(chǎn)品共10件,其中有2件次品,用戶先對產(chǎn)品進行不放回抽檢以決定是否接收  抽檢規(guī)則是這樣的:一次取一件產(chǎn)品檢查,若前三次沒有抽查到次品,則用戶接收這箱產(chǎn)品,而前三次中只要抽查到次品就停止抽檢,并且用戶拒絕接收這箱產(chǎn)品 

(I)求這箱產(chǎn)品被用戶拒絕接收的概率;

(II)記x表示抽檢的產(chǎn)品件數(shù),求x的概率分布列及期望 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年周至二中一模理) (12分)一廠家向用戶提供的一箱產(chǎn)品共10件,其中有2件次品,用戶先對產(chǎn)品進行不放回抽檢以決定是否接收  抽檢規(guī)則是這樣的:一次取一件產(chǎn)品檢查,若前三次沒有抽查到次品,則用戶接收這箱產(chǎn)品,而前三次中只要抽查到次品就停止抽檢,并且用戶拒絕接收這箱產(chǎn)品 

(I)求這箱產(chǎn)品被用戶拒絕接收的概率;

(II)記x表示抽檢的產(chǎn)品件數(shù),求x的概率分布列及期望 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一廠家向用戶提供的一箱產(chǎn)品共10件,其中有2件次品,用戶先對產(chǎn)品進行抽檢以決定是否接收.抽檢規(guī)則是這樣的:一次取一件產(chǎn)品檢查,若前三次沒有抽查到次品,則用戶接收這箱產(chǎn)品,而前三次中只要抽查到次品就停止抽檢,并且用戶拒絕接收這箱產(chǎn)品.

(I)求這箱產(chǎn)品被用戶拒絕接收的概率;

(II)記x表示抽檢的產(chǎn)品件數(shù),求x的概率分布列.

查看答案和解析>>

同步練習(xí)冊答案