(本小題滿分12 分)
如圖,四棱錐的底面是邊長為的菱形,
平面,的中點,O為底面對角線的交點;
(1)求證:平面平面; 
(2)求二面角的正切值。
(1)連接EO,EO∥PC,又平面平面
平面平面  ----------------6分
(2)ABCD為菱形,
過O在平面OEB內(nèi)作OFBE于F,連OF, AFO為二面角的平面角,
tanAFO ="                              -- " -----12分
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在六面體中,平面∥平面,平面,,,且,

(1)求證:平面平面
(2)求證:∥平面;
(3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

.(本小題滿分14分)
如圖,平面平面,點E、F、O分別為線段PAPB、AC的中點,點G是線段CO的中點,,.求證:

(1)平面;
(2)∥平面

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

.(本小題滿分12分)
如圖,在四棱錐P-ABCD中,底面ABCD是一直角梯形,,AD//BC, AB=BC=1,AD=2,PA底面ABCD,PD與底面成角,點E是PD的中點.

(1)  求證:BEPD;
(2)  求二面角P-CD-A的余弦值.            

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
如圖所示,平面,底面為菱形,的中點.
(1)求證:平面;
(2)求證://平面
(3) 求二面角的平面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(13分)已知在四棱錐P一ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=1,AB=2,E、F分別是AB、PD的中點。
(Ⅰ)求證:AF∥平面PEC;
(Ⅱ)求PC與平面ABCD所成角的正切值;
(Ⅲ)求二面角P一EC一D的正切值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
在長方體中,上的動點,點的中點.

(1)當點在何處時,直線//平面,并證明你的結(jié)論;
(2)在(Ⅰ)成立的條件下,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

用一張圓弧長等于  分米,半徑是10分米的扇形膠片制作一個圓錐體模型,這個圓錐體的體積等于_    __立方分米.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知A\B、C是表面積為的球面上三點,且AB=2,BC=4,ABC=為球心,則二面角0-AB-C的大小為( )
A.           B.            C.           D.

查看答案和解析>>

同步練習冊答案