若tan20°+msin20°=
3
,則m的值為
4
4
分析:由題意可得可得m=
3
-tan20°
sin20°
,再利用兩角和差的正弦公式、二倍角公式、同角三角函數(shù)的基本關(guān)系,運(yùn)算求得結(jié)果.
解答:解:由于tan20°+msin20°=
3
,可得m=
3
-tan20°
sin20°
=
3
cos20°-sin20°
sin20°cos20°
=
2(
3
2
cos20°-
1
2
sin20°)
1
2
sin40°
=
4sin(60°-20°)
sin40°
=4,
故答案為 4.
點(diǎn)評(píng):本題主要考查兩角和差的正弦公式、二倍角公式、同角三角函數(shù)的基本關(guān)系,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若sinα=msin(2α+β),且m≠1,則
tan(α+β)tanα
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若tan20°+msin20°=
3
,則m的值為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省鹽城中學(xué)高二(下)期末數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

若tan20°+msin20°=,則m的值為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高三數(shù)學(xué)復(fù)習(xí)(第3章 三角函數(shù)與三角恒等變換):3.6 三角函數(shù)式的求值(解析版) 題型:解答題

若sinα=msin(2α+β),且m≠1,則=   

查看答案和解析>>

同步練習(xí)冊(cè)答案