已知函數(shù)y=x2-2ax+a2-3.
(1)若函數(shù)在區(qū)間[3,+∞)上單調(diào)遞增,求實數(shù)a的取值范圍;
(2)若x∈[-1,2],求函數(shù)最小值g(a)的函數(shù)表達式.
考點:二次函數(shù)的性質(zhì),函數(shù)解析式的求解及常用方法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)根據(jù)函數(shù)在區(qū)間[3,+∞)上單調(diào)遞增,得出a≤3,
(2)分類討論求解:當(dāng)a≤-1時,當(dāng)a≥2時,當(dāng)-1<a<2時.
解答: 解:函數(shù)y=x2-2ax+a2-3.
對稱軸為x=a,
(1)∵函數(shù)在區(qū)間[3,+∞)上單調(diào)遞增,
∴a≤3,
故實數(shù)a的取值范圍:a≤3,
(2)∵x∈[-1,2],
∴當(dāng)a≤-1時,函數(shù)最小值g(a)=f(-1)=a2+2a-2,
當(dāng)a≥2時,函數(shù)最小值g(a)=f(2)=a2-4a+1,
,函數(shù)最小值g(a)=f(a)=-3,
∴g(a)=
a2+2a-2,a≤-1
a2-4a+1,a≥2
-3,-1<a<2
點評:本題考查了二次函數(shù)的性質(zhì),分類討論求解最值,關(guān)鍵確定討論的標(biāo)準(zhǔn),屬于容易題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若復(fù)數(shù)
5
1-2i
+m(i為虛數(shù)單位)為純虛數(shù),則實數(shù)m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

根據(jù)數(shù)列的前幾項,寫出下列各數(shù)列的一個通項公式:
(1)0,3,8,15,24,…;
(2)
1
2
,
3
4
7
8
,
15
16
31
32
,…;
(3)
2
3
,-1,
10
7
,-
17
9
,
26
11
,-
37
13
,…

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將一塊長為10的正方形紙片ABCD剪去四個全等的等腰三角形△SEE′,△SFF′,△SGG′,△SHH′,再將剩下的陰影部分折成一個四棱錐形狀的工藝品包裝盒S-EFGH,其中A,B,C,D重合于點O,E與E′重合,F(xiàn)與F′重合,G與G′重合,H與H′重合(如圖所示)

(1)求證:平面SEG⊥平面SFH
(2)試求原平面圖形中AE的長,使得二面角E-SH-F的余弦值恰為
2
3

(3)指出二面角E-SH-F的余弦值的取值范圍(不必說明理由)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了更好的了解某校高三學(xué)生期中考試的數(shù)學(xué)成績情況,從所有高三學(xué)生中抽取40名學(xué)生,將他們的數(shù)學(xué)成績(滿分100分,成績均為不低于40分的整數(shù))分成六段:[40,50),[50,60),…,[90,100]后得到如圖所示的頻率分布直方圖.
(1)若該校高三年級有1800人,試估計這次考試的數(shù)學(xué)成績不低于60分的人數(shù)及60分以上的學(xué)生的平均分;
(2)若從[40,50)與[90,100]這兩個分數(shù)段內(nèi)的學(xué)生中隨機選取兩名學(xué)生,求這兩名學(xué)生成績之差的絕對值不大于10的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校隨機調(diào)查了80位學(xué)生,以研究學(xué)生中愛好羽毛球運動與性別的關(guān)系,得到下面的數(shù)據(jù)表:
愛好不愛好合計
203050
102030
合計305080
(1)將此樣本的頻率估計為總體的概率,隨機調(diào)查了本校的3名學(xué)生.設(shè)這3人中愛好羽毛球運動的人數(shù)為X,求X的分布列和期望值;
(2)根據(jù)表中數(shù)據(jù),能否有充分證據(jù)判定愛好羽毛球運動與性別有關(guān)聯(lián)?若有,有多大把握?
p(Χ2≥k)0.1000.0500.010
k2.7063.8416.635
附:Χ2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

觀察下列表格:我們可以發(fā)現(xiàn)(用a,b,c表示三個數(shù),且a<b<c):
3,4,532+42=52
5,12,1352+122=132
7,24,2572+242=252
9,40,4192+402=412
21,b,c212+b2=c2
(1)a2+b2
 
c2
(2)最小值a是一個
 
數(shù)(填“奇”或“偶”),其余兩個數(shù)b,c是
 
的兩個正整數(shù)
(3)最小奇數(shù)的平方等于另外兩個整數(shù)的
 

(4)x是大于1的奇數(shù),將x2拆分成兩個連續(xù)整數(shù)y,y+1的和,試證明:x,y,y+1是一組勾股數(shù)
(5)求出表格中的b,c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某企業(yè)對自己的拳頭產(chǎn)品的銷售價格(單位:元)與月銷售量(單位:萬件)進行調(diào)查,其中最近五個月的統(tǒng)計數(shù)據(jù)如下表所示:
價格x99.51010.511
銷售量y11n865
由散點圖可知,銷售量y與價格x之間有較強的線性相關(guān)關(guān)系,其線性回歸直線方程是:
y
=-3.2x+40,則n=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若|
a
|=2,|
b
|=1,且
a
b
的夾角為60°,則當(dāng)|
a
-x
b
|取得最小值時,實數(shù)x的值為
 

查看答案和解析>>

同步練習(xí)冊答案