若數(shù)列{an}的前n項和為Sn,則下列命題正確的是


  1. A.
    若數(shù)列{ an}是遞增數(shù)列,則數(shù)列{Sn}也是遞增數(shù)列:
  2. B.
    數(shù)列{Sn}是遞增數(shù)列的充要條件是數(shù)列{an}的各項均為正數(shù)
  3. C.
    若{an}是等差數(shù)列,則對于k≥2且k∈N,S1•S2…Sk=0的充要條件是a1•a2•ak=0
  4. D.
    若{an}是等比數(shù)列,則對于k≥2且k∈N,S1•S2…Sk=0的充要條件是ak+ak+1=0.
D
分析:利用等差數(shù)列、等比數(shù)列的定義和性質(zhì),數(shù)列的前n項和的意義,通過舉反例可得A、B、C不正確.經(jīng)過檢驗,只有D正確,從而得出結論.
解答:A:數(shù)列{an}的前n項和為Sn,故 Sn =a1+a2+a3+…+an
若數(shù)列{an}是遞增數(shù)列,則數(shù)列{Sn}不一定是遞增數(shù)列,如an=n-60,當an<0 時,數(shù)列{Sn}是遞減數(shù)列,故A不正確.
B:由數(shù)列{Sn}是遞增數(shù)列,不能推出數(shù)列{an}的各項均為正數(shù),
如數(shù)列:0,1,2,3,…,滿足{Sn}是遞增數(shù)列,但不滿足數(shù)列{an}的各項均為正數(shù),故B不正確.
C:若{an}是等差數(shù)列(公差d≠0),則由S1•S2…Sk=0不能推出a1•a2…ak=0,
例如數(shù)列:-3,-1,1,3,滿足S4=0,但 a1•a2•a3•a4≠0,故C不正確.
D:一方面:若{an}是等比數(shù)列,則由S1•S2…Sk=0(k≥2,k∈N),
從而當k=2時,有S1•S2=0?S2=0?a1+a2=0,
∴a2=-a1,從而數(shù)列的{an}公比為-1,故有ak+ak+1=ak-ak=0.
另一方面,由ak+ak+1=0可得ak=-ak+1,∴a2=-a1
可得S2=0,∴S1•S2…Sk=0(k≥2,k∈N),故D正確.
故選D.
點評:本題主要考查等差數(shù)列、等比數(shù)列的定義和性質(zhì),數(shù)列的前n項和的意義,舉反例來說明某個命題不正確,是一種簡單有效的方法,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知點P1(a1,b1),P2(a2,b2),…,Pn(an,bn)(n∈N*)都在函數(shù)y=log
12
x
的圖象上.
(Ⅰ)若數(shù)列{bn}是等差數(shù)列,求證數(shù)列{an}為等比數(shù)列;
(Ⅱ)若數(shù)列{an}的前n項和為Sn=1-2-n,過點Pn,Pn+1的直線與兩坐標軸所圍成三角形面積為cn,求使cn≤t對n∈N*恒成立的實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

以下有四種說法:
(1)若p∨q為真,p∧q為假,則p與q必為一真一假;
(2)若數(shù)列{an}的前n項和為Sn=n2+n+1,n∈N*,則an=2n,n∈N*;
(3)若f′(x0)=0,則f(x)在x=x0處取得極值;
(4)由變量x和y的數(shù)據(jù)得到其回歸直線方程l: 
y
=bx+a
,則l一定經(jīng)過點P(
.
x
, 
.
y
)

以上四種說法,其中正確說法的序號為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若數(shù)列{an}的前n項和為Sn,則下列命題:
(1)若數(shù)列{an}是遞增數(shù)列,則數(shù)列{Sn}也是遞增數(shù)列;
(2)數(shù)列{Sn}是遞增數(shù)列的充要條件是數(shù)列{an}的各項均為正數(shù);
(3)若{an}是等差數(shù)列(公差d≠0),則S1•S2…Sk=0的充要條件是a1•a2…ak=0.
(4)若{an}是等比數(shù)列,則S1•S2…Sk=0(k≥2,k∈N)的充要條件是an+an+1=0.
其中,正確命題的個數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若數(shù)列{an}的前n項和為Sn,且有4Sn=an2+4n-1,n∈N*,
(1)求a1的值;
(2)求證:(an-2)2-an-12=0(n≥2);
(3)求出所有滿足條件的數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點(x,y)是區(qū)域
x+2y≤2n
x≥0
y≥0
,(n∈N*)內(nèi)的點,目標函數(shù)z=x+y,z的最大值記作zn.若數(shù)列{an}的前n項和為Sn,a1=1,且點(Sn,an)在直線zn=x+y上.
(Ⅰ)證明:數(shù)列{an-2}為等比數(shù)列;
(Ⅱ)求數(shù)列{Sn}的前n項和Tn

查看答案和解析>>

同步練習冊答案