(08年福州質(zhì)檢二)(12分)

如圖,直三棱柱A1B1C1―ABC中,C1C=CB=CA=2,AC⊥CB. D、E分別為棱C1C、B1C1的中點(diǎn).

    (Ⅰ)求與平面A1C1CA所成角的大。

    (Ⅱ)求二面角B―A1D―A的大。

    (Ⅲ)試在線段AC上確定一點(diǎn)F,使得EF⊥平面A1BD.

解析:(Ⅰ)連接A1C.∵A1B1C1-ABC為直三棱柱,∴CC1⊥底面ABC,∴CC1⊥BC.

    ∵AC⊥CB,∴BC⊥平面A1C1CA. ……………1分

    ∴與平面A1C1CA所成角,

.

與平面A1C1CA所成角為.…………3分

 

(Ⅱ)分別延長(zhǎng)AC,A1D交于G. 過C作CM⊥A1G 于M,連結(jié)BM,

    ∵BC⊥平面ACC­1A1,∴CM為BM在平面A1C1CA內(nèi)的射影,

    ∴BM⊥A1G,∴∠CMB為二面角B―A1D―A的平面角,………………………5分

    平面A1C1CA中,C1C=CA=2,D為C1C的中點(diǎn),

    ∴CG=2,DC=1 在直角三角形CDG中,,.……7分

    即二面角B―A1D―A的大小為.……………………8分

(Ⅲ)取線段AC的中點(diǎn)F,則EF⊥平面A1BD.……………9分

證明如下:

∵A1B1C1―ABC為直三棱柱,∴B1C1//BC,

∵由(Ⅰ)BC⊥平面A1C1CA,∴B1C1⊥平面A1C1CA,……………10分

∵EF在平面A1C1CA內(nèi)的射影為C1F,當(dāng)F為AC的中點(diǎn)時(shí),

C1F⊥A1D,∴EF⊥A1D.

同理可證EF⊥BD,∴EF⊥平面A1BD.……………………12分

解法二:

(Ⅰ)同解法一……………………3分

(Ⅱ)∵A1B1C1―ABC為直三棱柱,C1C=CB=CA=2,

AC⊥CB,D、E分別為C1C、B1C1的中點(diǎn).

建立如圖所示的坐標(biāo)系得:

C(0,0,0),B(2,0,0),A(0,2,0),

C1(0,0,2), B1(2,0,2), A­1(0,2,2),

D(0,0,1), E(1,0,2).………………6分

,設(shè)平面A1BD的法向量為,

  .…………6分

平面ACC1A1­的法向量為=(1,0,0),.………7分

即二面角B―A1D―A的大小為.…………………8分

(Ⅲ)F為AC上的點(diǎn),故可設(shè)其坐標(biāo)為(0,,0),∴.

由(Ⅱ)知是平面A1BD的一個(gè)法向量,

欲使EF⊥平面A1BD,當(dāng)且僅當(dāng)//.……10分

,∴當(dāng)F為AC的中點(diǎn)時(shí),EF⊥平面A1BD.…………………12分

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(08年福州質(zhì)檢二文)(12分)

數(shù)列的前項(xiàng)和為,滿足關(guān)系: .

 (Ⅰ)求的通項(xiàng)公式:

 (Ⅱ)設(shè)數(shù)列的前項(xiàng)和為,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年福州質(zhì)檢二)(12分)

已知點(diǎn)A(-2,0),B(2,0),動(dòng)點(diǎn)P滿足:∠APB=2,且|PA||PB|sin2θ=2,

(Ⅰ)求證:動(dòng)點(diǎn)P的軌跡Q是雙曲線;

(Ⅱ)過點(diǎn)B的直線與軌跡Q交于兩點(diǎn)M,N.試問軸上是否存在定點(diǎn)C,使為常數(shù),若存在,求出點(diǎn)C的坐標(biāo);若不存在,說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年福州質(zhì)檢二)(12分)

數(shù)列的前項(xiàng)和為,滿足關(guān)系: .

(Ⅰ)求的通項(xiàng)公式:

(Ⅱ)設(shè)計(jì)算.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年福州質(zhì)檢二)(12分)

已知函數(shù)=2acos2x+bsinxcosx,且f(0)=,f()=.

(Ⅰ)求的解析式;

(Ⅱ)求的單調(diào)遞增區(qū)間;

(Ⅲ)函數(shù)的圖象經(jīng)過怎樣的平移可使其對(duì)應(yīng)的函數(shù)成為奇函數(shù)?

查看答案和解析>>

同步練習(xí)冊(cè)答案